音叉是什么| 什么是气短| 军区司令是什么级别| 黄热病是什么病| 儿童乳房发育挂什么科| 认真是什么意思| 狗的本命佛是什么佛| 什么花代表永恒的爱| 口腔溃疡挂什么科就诊| 为什么胸口疼| 结界是什么意思| 儿童病毒感染吃什么药| 什么是高纤维食物| 老花眼是什么原因引起的| 小腹疼是什么原因| 会字五行属什么| 小腹一直疼是什么原因| 经常打呼噜是什么原因| 小孩咳嗽吃什么药好| 从政是什么意思| 五行缺什么查询免费| 神经官能症挂什么科| bjd娃娃是什么| 红萝卜和胡萝卜有什么区别| 什么叫胆汁反流性胃炎| 人怕冷是什么原因| 六亲缘浅是什么意思| 京东自营店是什么意思| 兰姓是什么民族| 手柄是什么意思| 肚脐眼疼吃什么药| 7月13号是什么星座| 面试是什么意思| 4.20什么星座| 男生生理期是什么表现| 四大菩萨分别保佑什么| 采耳是什么意思| 张国荣为什么喜欢男的| 眼角发痒用什么眼药水| 冰释前嫌是什么意思| 市长属于什么级别| gy是什么颜色| 什么是乳酸堆积| 玻尿酸是什么| 滑膜炎用什么膏药好| 96年的属什么| 9d是什么意思| 什么是肾炎| 1962年属虎的是什么命| 生丝是什么| 线粒体是什么| 脑子嗡嗡响是什么原因| 什么空调最省电| 重庆五行属什么| 路痴是什么原因造成的| 世五行属什么| 梦到掉牙齿是什么预兆| 秋葵什么时候种植最好| 日加立念什么| 吴亦凡属什么| 小孩早上起床咳嗽是什么原因| 什么是跨境电商| 去加一笔是什么字| 长期便秘吃什么药好| 学生是什么阶级| 藏红花有什么功效| 高兴的动物是什么生肖| 女性脱发严重是什么原因引起的| 面部填充用什么填充效果好| b型o型生出来的孩子什么血型| 明天叫什么日| 感冒发烧吃什么水果好| 晚上9点多是什么时辰| 什么的毛主席| 腮腺炎不能吃什么| 微信中抱拳是什么意思| 学位证书有什么用| 十二朵玫瑰花代表什么意思| 什么的天| 结石挂什么科| 华侨是什么| pp1是什么意思| 免疫球蛋白g是什么意思| 黄山毛峰属于什么茶| 香字五行属什么| 公积金基数是什么意思| 撑台脚是什么意思| 常喝黑苦荞茶有什么好处| 头发爱出油是什么原因| 附件囊肿吃什么药可以消除| 黑色屎是什么原因| 为什么偏偏喜欢你| 胃胀气是什么原因引起的| 手抖挂什么科| 恩五行属性是什么| 什么叫静脉曲张| 女人脚发热是什么原因| 特朗普为什么叫川普| 二级教授是什么意思| 胎位lop是什么意思| 老鼠跟什么属相最配| 银杏叶提取物治什么病| ms是什么单位| 甲功七项挂什么科| 小孩出汗多是什么原因| swan什么意思| 晚上吃什么| 10015是什么电话| 超凡脱俗是什么意思| 典型是什么意思| 耳朵不舒服是什么原因| 什么是禅定| 马斯卡彭是什么| 什么花一年四季都开花| 酉鬼念什么| 孕妇梦见小蛇是什么意思| 寂寞的反义词是什么| 脂血是什么意思| 一个马一个并念什么| 三七粉什么颜色| 梅杰综合症是什么病| 肿瘤吃什么药可以消除| 儿童内热吃什么去内热| 蛋白是什么东西| 为什么会梦魇| 腹部痛是什么原因| 经常头疼是什么原因| 胆管炎吃什么药| 白羊座是什么象星座| 安宫丸什么时候吃| 洗礼是什么意思| 塑料袋属于什么垃圾| 什么叫因果| 子宫内膜异位症有什么症状| 爱吐口水是什么原因| 八月十五是什么节日| 养神经的药是什么药最好| 6.7是什么星座| 2月27日什么星座| 脑萎缩吃什么药能控制| 吃什么药补肾| 身怀六甲什么意思| 擦枪走火什么意思| 1999年出生的属什么| 扁桃体发炎引起的发烧吃什么药| 阿司匹林是什么药| 腊猪脚炖什么好吃| 国防部部长什么级别| ct检查什么| 妍字属于五行属什么| 10月2号是什么星座| 经常困想睡觉是什么问题| 乳腺病是什么意思| 黄骨鱼是什么鱼| 正品是什么意思| 小钢炮是什么意思| 魔芋丝是什么做的| 上司是什么意思| 川芎有什么功效| 手冲是什么| 灵魂伴侣是指什么意思| 邦字五行属什么| 承字属于五行属什么| 八带是什么| 男的纹般若有什么寓意| 化疗与放疗有什么区别| 女生腰疼是什么原因| 冬占生男是什么意思| 手上掉皮什么原因| 伏案什么意思| cc是什么单位| 吃不胖是什么原因| 榴莲树长什么样子图片| 牙齿发软是什么原因| 红花配绿叶是什么意思| 白喉是什么病| 住房公积金缴存基数是什么意思| 山药与什么食物相克| pef是什么意思| 对乙酰氨基酚是什么药| 蜗牛爱吃什么| ab血型和o型生的孩子是什么血型| 舌面有裂纹是什么原因| 卡姿兰属于什么档次| 引力的本质是什么| 鼻子出血是什么原因引起的| 熠熠生辉什么意思| 朱祁镇为什么杀于谦| 日不落是什么意思| 肠衣是什么做的| 什么时间英语| mmhg是什么意思| 肺炎支原体感染吃什么药| 籽骨是什么意思| 晚上十二点是什么时辰| 十二月七号是什么星座| 吃什么容易滑胎流产| 216是什么意思| pdl是什么意思| 丁丁是什么| 多囊肾是什么意思| 热玛吉是什么| 汗斑用什么药膏| 祚是什么意思| 6541是什么药| 空腹喝啤酒有什么危害| 宫腔内偏强回声是什么意思| 上升星座什么意思| 动车跟高铁有什么区别| 梗塞灶是什么意思| 有什么神话故事| 梦到小鸟是什么意思| 眼睛充血是什么原因引起的| 肝囊肿挂什么科| 皮肤擦伤用什么药最好| 乳腺实性结节是什么意思| 说什么情深似海我却不敢当| 什么叫六亲| 227是什么意思| 女人梦见搬家预示什么| 小鹿乱撞是什么意思| 泌尿是什么意思| 感冒引起的咳嗽吃什么药| 防晒霜和隔离霜有什么区别| 血红蛋白是指什么| 膝关节退行性变是什么意思| 塔罗牌逆位是什么意思| 为什么阴天紫外线更强| 早上起床口苦口干是什么原因| 尿结石有什么症状| 辞海是什么书| 手指麻是什么原因| 肾虚是什么原因造成的| 舌尖溃疡是什么原因| 11月份是什么星座| 青城之恋是什么生肖| 尖锐湿疣什么症状| zero是什么牌子| 金童玉女是什么意思| 为什么会梦到自己怀孕| 梦见乌龟是什么意思| 7月6日什么星座| 小孩腿抽筋是什么原因引起的| 双肺条索是什么意思| 什么叫占位病变| 爱打扮的女人说明什么| 乙肝病毒表面抗体高是什么意思| 生化全项包括什么| 屁多且臭是什么原因| 8月19日是什么星座| 他汀是什么药| 片状低回声区什么意思| 狗屎运是什么意思| 补气血吃什么食物| 牙痛用什么止痛| 丙氨酸氨基转移酶偏高吃什么药| 吃什么水果对肾好| 红房子是什么| b族维生素什么时候吃效果最好| 什么药可以流产| 偏光和非偏光有什么区别| 为什么会得梅毒| 举足轻重什么意思| 男人的魅力是什么| 百度

菲律宾一客车从桥上坠落 至少40人死伤

百度 无常大鬼,不期而到,冥冥游神,未知罪福。

In mathematics, the Radon–Nikodym theorem is a result in measure theory that expresses the relationship between two measures defined on the same measurable space. A measure is a set function that assigns a consistent magnitude to the measurable subsets of a measurable space. Examples of a measure include area and volume, where the subsets are sets of points; or the probability of an event, which is a subset of possible outcomes within a wider probability space.

One way to derive a new measure from one already given is to assign a density to each point of the space, then integrate over the measurable subset of interest. This can be expressed as

where ν is the new measure being defined for any measurable subset A and the function f is the density at a given point. The integral is with respect to an existing measure μ, which may often be the canonical Lebesgue measure on the real line R or the n-dimensional Euclidean space Rn (corresponding to our standard notions of length, area and volume). For example, if f represented mass density and μ was the Lebesgue measure in three-dimensional space R3, then ν(A) would equal the total mass in a spatial region A.

The Radon–Nikodym theorem essentially states that, under certain conditions, any measure ν can be expressed in this way with respect to another measure μ on the same space. The function ?f? is then called the Radon–Nikodym derivative and is denoted by .[1] An important application is in probability theory, leading to the probability density function of a random variable.

The theorem is named after Johann Radon, who proved the theorem for the special case where the underlying space is Rn in 1913, and for Otto Nikodym who proved the general case in 1930.[2] In 1936 Hans Freudenthal generalized the Radon–Nikodym theorem by proving the Freudenthal spectral theorem, a result in Riesz space theory; this contains the Radon–Nikodym theorem as a special case.[3]

A Banach space Y is said to have the Radon–Nikodym property if the generalization of the Radon–Nikodym theorem also holds, mutatis mutandis, for functions with values in Y. All Hilbert spaces have the Radon–Nikodym property.

Formal description

edit

Radon–Nikodym theorem

edit

The Radon–Nikodym theorem involves a measurable space   on which two σ-finite measures are defined,   and   It states that, if   (that is, if   is absolutely continuous with respect to  ), then there exists a  -measurable function   such that for any measurable set    

Radon–Nikodym derivative

edit

The function   satisfying the above equality is uniquely defined up to a  -null set, that is, if   is another function which satisfies the same property, then    -almost everywhere. The function   is commonly written   and is called the Radon–Nikodym derivative. The choice of notation and the name of the function reflects the fact that the function is analogous to a derivative in calculus in the sense that it describes the rate of change of density of one measure with respect to another (the way the Jacobian determinant is used in multivariable integration).

Extension to signed or complex measures

edit

A similar theorem can be proven for signed and complex measures: namely, that if   is a nonnegative σ-finite measure, and   is a finite-valued signed or complex measure such that   that is,   is absolutely continuous with respect to   then there is a  -integrable real- or complex-valued function   on   such that for every measurable set    

Examples

edit

In the following examples, the set X is the real interval [0,1], and   is the Borel sigma-algebra on X.

  1.   is the length measure on X.   assigns to each subset Y of X, twice the length of Y. Then,  .
  2.   is the length measure on X.   assigns to each subset Y of X, the number of points from the set {0.1, …, 0.9} that are contained in Y. Then,   is not absolutely-continuous with respect to   since it assigns non-zero measure to zero-length points. Indeed, there is no derivative  : there is no finite function that, when integrated e.g. from   to  , gives   for all  .
  3.  , where   is the length measure on X and   is the Dirac measure on 0 (it assigns a measure of 1 to any set containing 0 and a measure of 0 to any other set). Then,   is absolutely continuous with respect to  , and   – the derivative is 0 at   and 1 at  .[4]

Properties

edit
  • Let ν, μ, and λ be σ-finite measures on the same measurable space. If ν ? λ and μ ? λ (ν and μ are both absolutely continuous with respect to λ), then  
  • If ν ? μ ? λ, then  
  • In particular, if μ ? ν and ν ? μ, then  
  • If μ ? λ and g is a μ-integrable function, then  
  • If ν is a finite signed or complex measure, then  

Applications

edit

Probability theory

edit

The theorem is very important in extending the ideas of probability theory from probability masses and probability densities defined over real numbers to probability measures defined over arbitrary sets. It tells if and how it is possible to change from one probability measure to another. Specifically, the probability density function of a random variable is the Radon–Nikodym derivative of the induced measure with respect to some base measure (usually the Lebesgue measure for continuous random variables).

For example, it can be used to prove the existence of conditional expectation for probability measures. The latter itself is a key concept in probability theory, as conditional probability is just a special case of it.

Financial mathematics

edit

Amongst other fields, financial mathematics uses the theorem extensively, in particular via the Girsanov theorem. Such changes of probability measure are the cornerstone of the rational pricing of derivatives and are used for converting actual probabilities into those of the risk neutral probabilities.

Information divergences

edit

If μ and ν are measures over X, and μ ? ν

  • The Kullback–Leibler divergence from ν to μ is defined to be  
  • For α > 0, α ≠ 1 the Rényi divergence of order α from ν to μ is defined to be  

The assumption of σ-finiteness

edit

The Radon–Nikodym theorem above makes the assumption that the measure μ with respect to which one computes the rate of change of ν is σ-finite.

Negative example

edit

Here is an example when μ is not σ-finite and the Radon–Nikodym theorem fails to hold.

Consider the Borel σ-algebra on the real line. Let the counting measure, μ, of a Borel set A be defined as the number of elements of A if A is finite, and otherwise. One can check that μ is indeed a measure. It is not σ-finite, as not every Borel set is at most a countable union of finite sets. Let ν be the usual Lebesgue measure on this Borel algebra. Then, ν is absolutely continuous with respect to μ, since for a set A one has μ(A) = 0 only if A is the empty set, and then ν(A) is also zero.

Assume that the Radon–Nikodym theorem holds, that is, for some measurable function f one has

 

for all Borel sets. Taking A to be a singleton set, A = {a}, and using the above equality, one finds

 

for all real numbers a. This implies that the function ?f?, and therefore the Lebesgue measure ν, is zero, which is a contradiction.

Positive result

edit

Assuming   the Radon–Nikodym theorem also holds if   is localizable and   is accessible with respect to  ,[5]:?p. 189, Exercise 9O? i.e.,   for all  [6]:?Theorem 1.111 (Radon–Nikodym, II)?[5]:?p. 190, Exercise 9T(ii)?

Proof

edit

This section gives a measure-theoretic proof of the theorem. There is also a functional-analytic proof, using Hilbert space methods, that was first given by von Neumann.

For finite measures μ and ν, the idea is to consider functions ?f? with f?dμ. The supremum of all such functions, along with the monotone convergence theorem, then furnishes the Radon–Nikodym derivative. The fact that the remaining part of μ is singular with respect to ν follows from a technical fact about finite measures. Once the result is established for finite measures, extending to σ-finite, signed, and complex measures can be done naturally. The details are given below.

For finite measures

edit

Constructing an extended-valued candidate First, suppose μ and ν are both finite-valued nonnegative measures. Let F be the set of those extended-value measurable functions f? : X → [0, ∞] such that:

 

F ≠ ?, since it contains at least the zero function. Now let f1, ?f2F, and suppose A is an arbitrary measurable set, and define:

 

Then one has

 

and therefore, max{?f?1, ?f?2} ∈ F.

Now, let {?fn?} be a sequence of functions in F such that

 

By replacing ?fn? with the maximum of the first n functions, one can assume that the sequence {?fn?} is increasing. Let g be an extended-valued function defined as

 

By Lebesgue's monotone convergence theorem, one has

 

for each A ∈ Σ, and hence, gF. Also, by the construction of g,

 

Proving equality Now, since gF,

 

defines a nonnegative measure on Σ. To prove equality, we show that ν0 = 0.

Suppose ν0 ≠ 0; then, since μ is finite, there is an ε > 0 such that ν0(X) > ε?μ(X). To derive a contradiction from ν0 ≠ 0, we look for a positive set P ∈ Σ for the signed measure ν0 ? ε?μ (i.e. a measurable set P, all of whose measurable subsets have non-negative ν0 ? εμ measure), where also P has positive μ-measure. Conceptually, we're looking for a set P, where ν0ε?μ in every part of P. A convenient approach is to use the Hahn decomposition (P, N) for the signed measure ν0 ? ε?μ.

Note then that for every A ∈ Σ one has ν0(AP) ≥ ε?μ(AP), and hence,

 

where 1P is the indicator function of P. Also, note that μ(P) > 0 as desired; for if μ(P) = 0, then (since ν is absolutely continuous in relation to μ) ν0(P) ≤ ν(P) = 0, so ν0(P) = 0 and

 

contradicting the fact that ν0(X) > εμ(X).

Then, since also

 

g + ε?1PF and satisfies

 

This is impossible because it violates the definition of a supremum; therefore, the initial assumption that ν0 ≠ 0 must be false. Hence, ν0 = 0, as desired.

Restricting to finite values Now, since g is μ-integrable, the set {xX : g(x) = ∞} is μ-null. Therefore, if a ?f? is defined as

 

then f has the desired properties.

Uniqueness As for the uniqueness, let ?f, g : X → [0, ∞) be measurable functions satisfying

 

for every measurable set A. Then, g ? f? is μ-integrable, and

  (Recall that we can split the integral into two as long as they are measurable and non-negative)

In particular, for A = {xX : f(x) > g(x)}, or {xX : f(x) < g(x)}. It follows that

 

and so, that (g ? f?)+ = 0 μ-almost everywhere; the same is true for (g ? f?)?, and thus, f?= g μ-almost everywhere, as desired.

For σ-finite positive measures

edit

If μ and ν are σ-finite, then X can be written as the union of a sequence {Bn}n of disjoint sets in Σ, each of which has finite measure under both μ and ν. For each n, by the finite case, there is a Σ-measurable function ?fn? : Bn → [0, ∞) such that

 

for each Σ-measurable subset A of Bn. The sum   of those functions is then the required function such that  .

As for the uniqueness, since each of the fn is μ-almost everywhere unique, so is f.

For signed and complex measures

edit

If ν is a σ-finite signed measure, then it can be Hahn–Jordan decomposed as ν = ν+ ? ν? where one of the measures is finite. Applying the previous result to those two measures, one obtains two functions, g, h : X → [0, ∞), satisfying the Radon–Nikodym theorem for ν+ and ν? respectively, at least one of which is μ-integrable (i.e., its integral with respect to μ is finite). It is clear then that f = g ? h satisfies the required properties, including uniqueness, since both g and h are unique up to μ-almost everywhere equality.

If ν is a complex measure, it can be decomposed as ν = ν1 + 2, where both ν1 and ν2 are finite-valued signed measures. Applying the above argument, one obtains two functions, g, h : X → [0, ∞), satisfying the required properties for ν1 and ν2, respectively. Clearly, f?= g + ih is the required function.

The Lebesgue decomposition theorem

edit

Lebesgue's decomposition theorem shows that the assumptions of the Radon–Nikodym theorem can be found even in a situation which is seemingly more general. Consider a σ-finite positive measure   on the measure space   and a σ-finite signed measure   on  , without assuming any absolute continuity. Then there exist unique signed measures   and   on   such that  ,  , and  . The Radon–Nikodym theorem can then be applied to the pair  .

See also

edit

Notes

edit
  1. ^ Billingsley, Patrick (1995). Probability and Measure (Third ed.). New York: John Wiley & Sons. pp. 419–427. ISBN 0-471-00710-2.
  2. ^ Nikodym, O. (1930). "Sur une généralisation des intégrales de M. J. Radon" (PDF). Fundamenta Mathematicae (in French). 15: 131–179. doi:10.4064/fm-15-1-131-179. JFM 56.0922.02. Retrieved 2025-08-06.
  3. ^ Zaanen, Adriaan C. (1996). Introduction to Operator Theory in Riesz Spaces. Springer. ISBN 3-540-61989-5.
  4. ^ "Calculating Radon Nikodym derivative". Stack Exchange. April 7, 2018.
  5. ^ a b Brown, Arlen; Pearcy, Carl (1977). Introduction to Operator Theory I: Elements of Functional Analysis. ISBN 978-1461299288.
  6. ^ Fonseca, Irene; Leoni, Giovanni. Modern Methods in the Calculus of Variations: Lp Spaces. Springer. p. 68. ISBN 978-0-387-35784-3.

References

edit
  • Lang, Serge (1969). Analysis II: Real analysis. Addison-Wesley. Contains a proof for vector measures assuming values in a Banach space.
  • Royden, H. L.; Fitzpatrick, P. M. (2010). Real Analysis (4th ed.). Pearson. Contains a lucid proof in case the measure ν is not σ-finite.
  • Shilov, G. E.; Gurevich, B. L. (1978). Integral, Measure, and Derivative: A Unified Approach. Richard A. Silverman, trans. Dover Publications. ISBN 0-486-63519-8.
  • Stein, Elias M.; Shakarchi, Rami (2005). Real analysis: measure theory, integration, and Hilbert spaces. Princeton lectures in analysis. Princeton, N.J: Princeton University Press. ISBN 978-0-691-11386-9. Contains a proof of the generalisation.
  • Teschl, Gerald. "Topics in Real and Functional Analysis". (lecture notes).

This article incorporates material from Radon–Nikodym theorem on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.

兔子跟什么生肖最配对 螚什么意思 脱肛吃什么药 食物不耐受是什么意思 胃烂了是什么病严重吗
不宁腿综合症是什么原因引起的 什么叫基因 去医院看舌头挂什么科 寒湿吃什么中成药 什么是转氨酶
开瑞坦是什么药 股票pb是什么意思 glu是什么氨基酸 耿直是什么意思 不安分是什么意思
生理需要是什么意思 小腿疼痛什么原因引起的 饮食不规律会导致什么 体格检查是什么意思 孩子睡觉咬牙齿是什么原因引起的
俞伯牙摔琴谢知音摔的是什么乐器hcv7jop9ns2r.cn 筋头巴脑是什么东西zsyouku.com 壁厚是什么意思hcv7jop9ns9r.cn 三个又读什么hcv8jop3ns4r.cn 九宫八卦是什么意思hcv9jop2ns2r.cn
owl是什么意思hcv8jop6ns3r.cn 甲状腺阳性是什么意思hcv8jop9ns4r.cn 小孩缺铁有什么症状hcv8jop0ns4r.cn s925是什么金onlinewuye.com 为什么第一次进不去hcv8jop1ns8r.cn
什么是屈光不正hcv9jop8ns3r.cn 孝敬是什么意思hcv8jop9ns3r.cn 助教是干什么的hcv8jop6ns1r.cn 环切手术是什么hcv8jop3ns9r.cn 打磨工为什么没人干hcv9jop6ns2r.cn
什么是符号hcv9jop7ns3r.cn 频繁大便是什么原因chuanglingweilai.com 花中隐士是什么花aiwuzhiyu.com 过敏性鼻炎吃什么药能快速缓解hcv8jop6ns9r.cn 爱出汗吃什么药好hcv9jop1ns3r.cn
百度