尿胆原是什么意思| 宫颈多发纳囊什么意思| CNN什么意思| 细菌性阴道炎吃什么药好| 免漆板是什么板材| 鼻子长痘是什么原因| 九里香什么时候开花| 红红的枫叶像什么| 卫生间除臭用什么最好| sp02是什么意思| 总出虚汗什么原因怎么解决| 操逼是什么感觉| 胃酸是什么| 早餐一般吃什么| 10月底是什么星座| 月桂酸是什么| 5月6号是什么星座| 女性尿酸高有什么症状表现| 血沉是查什么| 什么道路| 太作了是什么意思| 蚊子会传播什么疾病| 红枣什么时候吃最好| 爱情是什么样子的| 发霉是什么菌| 聤耳是什么意思| 身体不适是什么意思| 牙龈流血是什么原因| 康庄大道什么意思| 三八送什么花| 四十属什么| 养寇自重什么意思| 痣的位置代表什么| 便秘吃什么快速通便| 征信对个人有什么影响| 什么是形而上学| 可颂是什么意思| 嫦娥奔月是什么节日| 愣头青是什么意思| 胸有成竹是什么生肖| 阴囊湿疹吃什么药| 胃热吃什么食物好| 96199是什么电话| n是什么| 牛头马面指什么生肖| 抗氧化什么意思| 代言人是什么意思| 女人吃黄芪有什么好处| 朝鲜面是什么原料做的| 空调室内机漏水是什么原因| 磅礴是什么意思| 背上有痣代表什么| 塔罗牌愚者是什么意思| 老流鼻血是什么原因| cd8高是什么原因| 吃樱桃有什么好处| 什么七八什么| 什么人吃天麻最好| 水印是什么意思| 肾阳虚吃什么药好| 地贫是什么| 耳朵痒用什么药| 八月生日什么星座| 03属什么生肖| 亚麻籽和什么相克| 情绪不稳定易怒烦躁是什么症状| 贫血做什么检查能查出来| 下过海是什么意思| 风邪是什么意思| 梦见自己大出血是什么征兆| 丘比特是什么意思| 宫颈口在什么位置| 喉咙痛有黄痰吃什么药| 胃肠外科是看什么病的| 宝宝出急疹要注意什么| 干什么| 龟头炎用什么药膏好| 手爆皮是什么原因| 女性尿路感染是什么原因造成的| 慢阻肺是什么意思| 青海是什么省| 天麻长什么样子图片| 胃幽门螺旋杆菌吃什么药效果好| 富二代是什么意思| 峦是什么意思| 小孩说话晚是什么原因| 嘴唇周围长痘痘是什么原因导致| 坏血病是什么| 纯碱是什么| 君子兰不开花是什么原因| 重庆为什么叫重庆| 球镜柱镜是什么意思| 担担面是什么面| 十月30号是什么星座| 肛窦炎用什么药最好| 绿豆汤什么颜色| 驴友是什么意思| 月经过多是什么原因| 芥菜什么时候种| 口力念什么| 药学是什么| 漂洋过海是什么生肖| 99是什么意思| 丁香泡水喝有什么功效和作用| 上证指数是什么意思| 魏丑夫和芈月什么关系| 江苏有什么山| 乸是什么意思| 女人腰酸背痛是什么病| 京东京豆有什么用| 小三阳是什么病| 全麦面是什么面| 八院是什么医院| 团委书记是什么级别| 什么叫比例| 8023什么意思| 肺结核是什么| 硌人什么意思| 脸红是什么原因| 什么牙膏好| 2016年是什么命| 胡子长得快是什么原因| 胎盘长什么样子图片| 血糖偏高能吃什么水果| 甘油三酯指什么| 严字五行属什么| 菊花茶为什么会变绿色| 黄水疮是什么原因引起的| 暗送秋波什么意思| 碧螺春是什么茶| 病毒四项检查都有什么| 柠檬苦是什么原因| lv是什么| nt宝宝不配合说明什么| 快的反义词是什么| 副县长是什么级别干部| 单亲是什么意思| 龙的幸运色是什么颜色| 刘亦菲为什么不结婚| 孕妇放屁多是什么原因| 嗓子哑是什么原因| asd什么意思| 百合花什么时候种植| 阴囊潮湿用什么药| 六味地黄丸什么牌子的好| 膝关节退行性改变是什么意思| 乌黑乌黑的什么| 刚需房是什么意思| 浅笑是什么意思| 吃杨梅有什么好处| 喝什么利尿效果最好| 职业病是什么意思| 焦虑症吃什么好| 丝瓜烧什么好吃| 中意你是什么意思| 舌苔白腻是什么原因| 小便多是什么原因男性| 4.9是什么星座| 碳14呼气试验阳性是什么意思| sos代表什么| 肠易激综合征中医叫什么| 梦见朋友结婚是什么意思| 肝外胆管扩张什么意思| vin是什么| 宝珀手表属于什么档次| r的平方是什么意思| 霸王别姬是什么意思| 男人吃什么药时间长| 嘴唇紫红色是什么原因| 跳槽是什么意思| 内分泌失调什么意思| 梦到老公被蛇咬是什么意思| qq会员有什么用| 升白针叫什么名字| 狗狗咳嗽吃什么药| 618是什么意思| 正确的三观是什么| 血压测不出来什么原因| 为伊消得人憔悴什么意思| 秦二世叫什么| 脚为什么会痒越抓越痒| 梦见自己生了个女儿是什么预兆| 脚肿腿肿是什么原因引起的| 入心是什么意思| 不靠谱是什么意思| 回盲部憩室是什么意思| 宽带m是什么意思| 0是偶数吗为什么| 维生素c的作用是什么| 挂号是什么意思| 86年属什么生肖| 维生素b2治什么病| 十三香是什么| 肌酐高是什么原因造成的| 早上起来有痰是什么原因| 土豆有什么营养| 阴霾是什么意思| 辐照食品是什么意思| 喝水都长肉是什么原因| 自然人是什么意思| 叼是什么意思| 受持是什么意思| 补肾吃什么东西效果最好| 风湿热是什么病| 什么是禅| 疏是什么意思| 肚子痛什么原因| 情人的定义是什么| 为什么姓张的不用说免贵| 测血糖挂号挂什么科| 天衣无缝什么意思| 全身性疾病是什么意思| dose是什么意思| 猪肝配什么菜炒好吃| 胰腺不舒服是什么症状| 为什么单位不愿意申请工伤| 公租房是什么| 咳嗽打什么点滴效果好| 门静脉高压是什么意思| pinky是什么意思| 喜欢咬指甲是什么原因| 土耳其说什么语言| 白带发黄用什么药| 羊绒和羊毛有什么区别| 血糖仪什么牌子的好用又准确| 茯苓什么味道| 移植后吃什么水果好| 被蜱虫咬了有什么症状| 去医院检查艾滋病挂什么科| 履什么意思| 如履薄冰什么意思| 波菜不能和什么一起吃| 五味子什么味道| 毛囊是什么| 楞严神咒是什么意思| 小儿安现在叫什么名| 增强免疫力吃什么维生素| 扬字五行属什么| 适得其反是什么意思| 减肥晚上吃什么水果| 梦见马是什么预兆| 你为什么爱我| a型和o型生的孩子是什么血型| 肝肾挂什么科| 为什么会落枕| 尿分叉是什么原因引起的| 西柚不能和什么一起吃| 洋葱吃多了有什么坏处| 有痰咳嗽吃什么药| 平舌音是什么意思| 女性安全期是什么时候| 文曲星下凡是什么意思| 2008年出生的属什么| tiamo是什么意思| 传宗接代是什么意思| 心脏不好吃什么| 什么越来越什么| 害是什么意思| 梦见活人死了是什么意思| 刘备是个什么样的人| 排卵期和排卵日有什么区别| 血管瘤有什么症状| 蚂蚁长什么样子| hg是什么意思| 百度

2017年电信和互联网行业网络安全年会本月召开

百度 ”  此外,从中东进口石油的管道也正在建设之中。

A protein microarray (or protein chip) is a high-throughput method used to track the interactions and activities of proteins, and to determine their function, and determining function on a large scale.[1] Its main advantage lies in the fact that large numbers of proteins can be tracked in parallel. The chip consists of a support surface such as a glass slide, nitrocellulose membrane, bead, or microtitre plate, to which an array of capture proteins is bound.[2] Probe molecules, typically labeled with a fluorescent dye, are added to the array. Any reaction between the probe and the immobilised protein emits a fluorescent signal that is read by a laser scanner.[3] Protein microarrays are rapid, automated, economical, and highly sensitive, consuming small quantities of samples and reagents.[4] The concept and methodology of protein microarrays was first introduced and illustrated in antibody microarrays (also referred to as antibody matrix) in 1983 in a scientific publication[5] and a series of patents.[6] The high-throughput technology behind the protein microarray was relatively easy to develop since it is based on the technology developed for DNA microarrays,[7] which have become the most widely used microarrays.

Motivation for development

edit

Protein microarrays were developed due to the limitations of using DNA microarrays for determining gene expression levels in proteomics. The quantity of mRNA in the cell often doesn't reflect the expression levels of the proteins they correspond to. Since it is usually the protein, rather than the mRNA, that has the functional role in cell response, a novel approach was needed. Additionally post-translational modifications, which are often critical for determining protein function, are not visible on DNA microarrays.[8] Protein microarrays replace traditional proteomics techniques such as 2D gel electrophoresis or chromatography, which were time-consuming, labor-intensive and ill-suited for the analysis of low abundant proteins.

Making the array

edit

The proteins are arrayed onto a solid surface such as microscope slides, membranes, beads or microtitre plates. The function of this surface is to provide a support onto which proteins can be immobilized. It should demonstrate maximal binding properties, whilst maintaining the protein in its native conformation so that its binding ability is retained. Microscope slides made of glass or silicon are a popular choice since they are compatible with the easily obtained robotic arrayers and laser scanners that have been developed for DNA microarray technology. Nitrocellulose film slides are broadly accepted as the highest protein binding substrate for protein microarray applications.

The chosen solid surface is then covered with a coating that must serve the simultaneous functions of immobilising the protein, preventing its denaturation, orienting it in the appropriate direction so that its binding sites are accessible, and providing a hydrophilic environment in which the binding reaction can occur. It also needs to display minimal non-specific binding in order to minimize background noise in the detection systems. Furthermore, it needs to be compatible with different detection systems. Immobilising agents include layers of aluminium or gold, hydrophilic polymers, and polyacrylamide gels, or treatment with amines, aldehyde or epoxy. Thin-film technologies like physical vapour deposition (PVD) and chemical vapour deposition (CVD) are employed to apply the coating to the support surface.

An aqueous environment is essential at all stages of array manufacture and operation to prevent protein denaturation. Therefore, sample buffers contain a high percent of glycerol (to lower the freezing point), and the humidity of the manufacturing environment is carefully regulated. Microwells have the dual advantage of providing an aqueous environment while preventing cross-contamination between samples.

In the most common type of protein array, robots place large numbers of proteins or their ligands onto a coated solid support in a pre-defined pattern. This is known as robotic contact printing or robotic spotting. Another fabrication method is ink-jetting, a drop-on-demand, non-contact method of dispersing the protein polymers onto the solid surface in the desired pattern.[9] Piezoelectric spotting is a similar method to ink-jet printing. The printhead moves across the array, and at each spot uses electric stimulation to deliver the protein molecules onto the surface via tiny jets. This is also a non-contact process.[10] Photolithography is a fourth method of arraying the proteins onto the surface. Light is used in association with photomasks, opaque plates with holes or transparencies that allow light to shine through in a defined pattern. A series of chemical treatments then enables deposition of the protein in the desired pattern upon the material underneath the photomask.[11]

The capture molecules arrayed on the solid surface may be antibodies, antigens, aptamers (nucleic acid-based ligands), affibodies (small molecules engineered to mimic monoclonal antibodies), or full length proteins. Sources of such proteins include cell-based expression systems for recombinant proteins, purification from natural sources, production in vitro by cell-free translation systems, and synthetic methods for peptides. Many of these methods can be automated for high throughput production but care must be taken to avoid conditions of synthesis or extraction that result in a denatured protein which, since it no longer recognizes its binding partner, renders the array useless.

Proteins are highly sensitive to changes in their microenvironment. This presents a challenge in maintaining protein arrays in a stable condition over extended periods of time. In situ methods—invented and published by Mingyue He and Michael Taussig in 2001[12][13]—involve on-chip synthesis of proteins as and when required, directly from the DNA using cell-free protein expression systems. Since DNA is a highly stable molecule it does not deteriorate over time and is therefore suited to long-term storage. This approach is also advantageous in that it circumvents the laborious and often costly processes of separate protein purification and DNA cloning, since proteins are made and immobilised simultaneously in a single step on the chip surface. Examples of in situ techniques are PISA (protein in situ array), NAPPA (nucleic acid programmable protein array) and DAPA (DNA array to protein array).

Types of arrays

edit
 
Types of protein arrays

There are three types of protein microarrays that are currently used to study the biochemical activities of proteins.

Analytical microarrays are also known as capture arrays. In this technique, a library of antibodies, aptamers or affibodies is arrayed on the support surface. These are used as capture molecules since each binds specifically to a particular protein. The array is probed with a complex protein solution such as a cell lysate. Analysis of the resulting binding reactions using various detection systems can provide information about expression levels of particular proteins in the sample as well as measurements of binding affinities and specificities. This type of microarray is especially useful in comparing protein expression in different solutions. For instance the response of the cells to a particular factor can be identified by comparing the lysates of cells treated with specific substances or grown under certain conditions with the lysates of control cells. Another application is in the identification and profiling of diseased tissues.

Reverse phase protein microarray (RPPA) involve complex samples, such as tissue lysates. Cells are isolated from various tissues of interest and are lysed. The lysate is arrayed onto the microarray and probed with antibodies against the target protein of interest. These antibodies are typically detected with chemiluminescent, fluorescent or colorimetric assays. Reference peptides are printed on the slides to allow for protein quantification of the sample lysates. RPAs allow for the determination of the presence of altered proteins or other agents that may be the result of disease. Specifically, post-translational modifications, which are typically altered as a result of disease can be detected using RPAs.[14]

Functional protein microarrays

edit

Functional protein microarrays (also known as target protein arrays) are constructed by immobilising large numbers of purified proteins and are used to identify protein–protein, protein–DNA, protein–RNA, protein–phospholipid, and protein–small-molecule interactions, to assay enzymatic activity and to detect antibodies and demonstrate their specificity. They differ from analytical arrays in that functional protein arrays are composed of arrays containing full-length functional proteins or protein domains. These protein chips are used to study the biochemical activities of the entire proteome in a single experiment.

The key element in any functional protein microarray-based assay is the arrayed proteins must retain their native structure, such that meaningful functional interactions can take place on the array surface. The advantages of controlling the precise mode of surface attachment through use of an appropriate affinity tag are that the immobilised proteins will have a homogeneous orientation resulting in a higher specific activity and higher signal-to-noise ratio in assays, with less interference from non-specific interactions.[15][16]

Detection

edit

Protein array detection methods must give a high signal and a low background. The most common and widely used method for detection is fluorescence labeling which is highly sensitive, safe and compatible with readily available microarray laser scanners. Other labels can be used, such as affinity, photochemical or radioisotope tags. These labels are attached to the probe itself and can interfere with the probe-target protein reaction. Therefore, a number of label free detection methods are available, such as surface plasmon resonance (SPR), carbon nanotubes, carbon nanowire sensors (where detection occurs via changes in conductance) and microelectromechanical system (MEMS) cantilevers.[17] All these label free detection methods are relatively new and are not yet suitable for high-throughput protein interaction detection; however, they do offer much promise for the future. Immunoassays on thiol-ene "synthetic paper" micropillar scaffolds have shown to generate a superior fluorescence signal.[18]

Protein quantitation on nitrocellulose coated glass slides can use near-IR fluorescent detection. This limits interferences due to auto-fluorescence of the nitrocellulose at the UV wavelengths used for standard fluorescent detection probes.[19]

Applications

edit

There are five major areas where protein arrays are being applied: diagnostics, proteomics, protein functional analysis, antibody characterization, and treatment development.

Diagnostics involves the detection of antigens and antibodies in blood samples; the profiling of sera to discover new disease biomarkers; the monitoring of disease states and responses to therapy in personalized medicine; the monitoring of environment and food. Digital bioassay is an example of using protein microarray for diagnostic purposes. In this technology, an array of microwells on a glass/polymer chip are seeded with magnetic beads (coated with fluorescent tagged antibodies), subjected to targeted antigens and then characterised by a microscope through counting fluorescing wells. A cost-effective fabrication platform (using OSTE polymers) for such microwell arrays has been recently demonstrated and the bio-assay model system has been successfully characterised.[20]

Proteomics pertains to protein expression profiling i.e. which proteins are expressed in the lysate of a particular cell.

Protein functional analysis is the identification of protein–protein interactions (e.g. identification of members of a protein complex), protein–phospholipid interactions, small molecule targets, enzymatic substrates (particularly the substrates of kinases) and receptor ligands.

Antibody characterization is characterizing cross-reactivity, specificity and mapping epitopes.

Treatment development involves the development of antigen-specific therapies for autoimmunity, cancer and allergies; the identification of small molecule targets that could potentially be used as new drugs.

Challenges

edit

Despite the considerable investments made by several companies, proteins chips have yet to flood the market. Manufacturers have found that proteins are actually quite difficult to handle. Production of reliable, consistent, high-throughput proteins that are correctly folded and functional is fraught with difficulties as they often result in low-yield of proteins due to decreased solubility and formation of inclusion bodies.[citation needed] A protein chip requires a lot more steps in its creation than does a DNA chip.

There are a number of approaches to this problem which differ fundamentally according to whether the proteins are immobilised through non-specific, poorly defined interactions, or through a specific set of known interactions. The former approach is attractive in its simplicity and is compatible with purified proteins derived from native or recombinant sources[21][22] but suffers from a number of risks. Most notable amongst these relate to the uncontrolled nature of the interactions between each protein and the surface; at best, this might give rise to a heterogeneous population of proteins in which active sites are sometimes occluded by the surface; at worst, it might destroy activity altogether due to partial or complete surface-mediated unfolding of the immobilised protein.

Challenges include: 1) finding a surface and a method of attachment that allows the proteins to maintain their secondary or tertiary structure and thus their biological activity and their interactions with other molecules, 2) producing an array with a long shelf life so that the proteins on the chip do not denature over a short time, 3) identifying and isolating antibodies or other capture molecules against every protein in the human genome, 4) quantifying the levels of bound protein while assuring sensitivity and avoiding background noise, 5) extracting the detected protein from the chip in order to further analyze it, 6) reducing non-specific binding by the capture agents, 7) the capacity of the chip must be sufficient to allow as complete a representation of the proteome to be visualized as possible; abundant proteins overwhelm the detection of less abundant proteins such as signaling molecules and receptors, which are generally of more therapeutic interest.[23]

See also

edit

References

edit
  1. ^ Melton, Lisa (2004). "Protein arrays: Proteomics in multiplex". Nature. 429 (6987): 101–107. Bibcode:2004Natur.429..101M. doi:10.1038/429101a. ISSN 0028-0836. PMID 15129287. S2CID 62775434.
  2. ^ Mark Schena (2005). Protein Microarrays. Jones & Bartlett Learning. pp. 47–. ISBN 978-0-7637-3127-4.
  3. ^ Mark Schena (2005). Protein Microarrays. Jones & Bartlett Learning. pp. 322–. ISBN 978-0-7637-3127-4.
  4. ^ Mitchell, Peter (2002). "A perspective on protein microarrays". Nature Biotechnology. 20 (3): 225–229. doi:10.1038/nbt0302-225. ISSN 1087-0156. PMID 11875416. S2CID 5603911.
  5. ^ Chang TW (December 1983). "Binding of cells to matrixes of distinct antibodies coated on solid surface". J. Immunol. Methods. 65 (1–2): 217–23. doi:10.1016/0022-1759(83)90318-6. PMID 6606681.
  6. ^ US 4591570 ; US 4829010 ; US 5100777 .
  7. ^ Hall, DA; Ptacek, J; Snyder, M (December 12, 2012). "Protein Microarray Technology". Mech. Ageing Dev. 128 (1): 161–7. doi:10.1016/j.mad.2006.11.021. PMC 1828913. PMID 17126887.
  8. ^ Talapatra, Anupam; Rouse, Richard; Hardiman, Gary (2002). "Protein microarrays: challenges and promises". Pharmacogenomics. 3 (4): 527–536. doi:10.1517/14622416.3.4.527. ISSN 1462-2416. PMID 12164775.
  9. ^ Calvert, Paul (2001). "Inkjet Printing for Materials and Devices". Chemistry of Materials. 13 (10): 3299–3305. doi:10.1021/cm0101632. ISSN 0897-4756.
  10. ^ "DNA Microarrays: Techniques". Arabidopsis.info. Archived from the original on August 28, 2008. Retrieved January 19, 2013.
  11. ^ Shin, DS; Kim, DH; Chung, WJ; Lee, YS (September 30, 2005). "Combinatorial solid phase peptide synthesis and bioassays". Journal of Biochemistry and Molecular Biology. 38 (5): 517–25. doi:10.5483/bmbrep.2005.38.5.517. PMID 16202229.
  12. ^ US patent 7674752, Mingyue He & Michael John Taussig, "Functional protein arrays", published August 15, 2004, issued March 10, 2010, assigned to Discema Limited 
  13. ^ He, M; Taussig, MJ (June 2001). "Single step generation of protein arrays from DNA by cell-free expression and in situ immobilisation (PISA method)". Nucleic Acids Research. 29 (15): E73–3. doi:10.1093/nar/29.15.e73. PMC 55838. PMID 11470888.
  14. ^ Hall, DA; Ptacek, J; Snyder, M (2007). "Protein microarray technology". Mech. Ageing Dev. 128 (1): 161–7. doi:10.1016/j.mad.2006.11.021. PMC 1828913. PMID 17126887.
  15. ^ Koopmann, JO; Blackburn, J (2003). "High affinity capture surface for matrix-assisted laser desorption/ionisation compatible protein microarrays". Rapid Communications in Mass Spectrometry. 17 (5): 455–62. Bibcode:2003RCMS...17..455K. doi:10.1002/rcm.928. PMID 12590394.
  16. ^ Blackburn, JM; Shoko, A; Beeton-Kempen, N (2012). Miniaturized, microarray-based assays for chemical proteomic studies of protein function. Methods in Molecular Biology. Vol. 800. pp. 133–62. doi:10.1007/978-1-61779-349-3_10. ISBN 978-1-61779-348-6. PMID 21964787.
  17. ^ Ray, Sandipan; Mehta, Gunjan; Srivastava, Sanjeeva (2010). "Label-free detection techniques for protein microarrays: Prospects, merits and challenges". Proteomics. 10 (4): 731–748. doi:10.1002/pmic.200900458. ISSN 1615-9861. PMC 7167936. PMID 19953541.
  18. ^ Guo, W; Vilaplana, L; Hansson, J; Marco, P; van der Wijngaart, W (2020). "Immunoassays on thiol-ene synthetic paper generate a superior fluorescence signal". Biosensors and Bioelectronics. 163: 112279. doi:10.1016/j.bios.2020.112279. hdl:10261/211201. PMID 32421629. S2CID 218688183.
  19. ^ Williams, Richard J.; Narayanan, Narasimhachari.; Casay, Guillermo A.; Lipowska, Malgorzata.; Peralta, Jose Mauro.; Tsang, Victor C. W.; Strekowski, Lucjan.; Patonay, Gabor. (1994). "Instrument To Detect Near-Infrared Fluorescence in Solid-Phase Immunoassay". Analytical Chemistry. 66 (19): 3102–3107. doi:10.1021/ac00091a018. ISSN 0003-2700. PMID 7978305.
  20. ^ Decrop, Deborah (2017). "Single-Step Imprinting of Femtoliter Microwell Arrays Allows Digital Bioassays with Attomolar Limit of Detection". ACS Applied Materials & Interfaces. 9 (12): 10418–10426. doi:10.1021/acsami.6b15415. PMID 28266828.
  21. ^ MacBeath, G; Schreiber, SL (September 8, 2000). "Printing proteins as microarrays for high-throughput function determination". Science. 289 (5485): 1760–3. Bibcode:2000Sci...289.1760M. doi:10.1126/science.289.5485.1760. PMID 10976071. S2CID 27553611.
  22. ^ Angenendt, P; Gl?kler, J; Sobek, J; Lehrach, H; Cahill, DJ (August 15, 2003). "Next generation of protein microarray support materials: evaluation for protein and antibody microarray applications". Journal of Chromatography A. 1009 (1–2): 97–104. doi:10.1016/s0021-9673(03)00769-6. PMID 13677649.
  23. ^ Fung, Eric T; Thulasiraman, Vanitha; Weinberger, Scot R; Dalmasso, Enrique A (2001). "Protein biochips for differential profiling". Current Opinion in Biotechnology. 12 (1): 65–69. doi:10.1016/S0958-1669(00)00167-1. ISSN 0958-1669. PMID 11167075.

Further reading

edit
刮宫是什么意思 台阶是什么意思 乌鸡白凤丸男性吃治疗什么 渣是什么意思 星光是什么意思
女性肾虚是什么原因导致的 左肺纤维灶什么意思 g点是什么 七四年属什么生肖 crh是什么意思
注明是什么意思 二氧化硅是什么晶体 脑膜炎是什么病严重吗 麻是什么植物 海带和什么不能一起吃
肝囊肿有什么危害 眼睛有点黄是什么原因 沙僧是什么生肖 血压低什么原因造成的 6.21什么星座
史铁生为什么瘫痪hcv7jop6ns8r.cn 50肩是什么意思hlguo.com 水是由什么构成的hcv8jop1ns1r.cn 男性内分泌失调吃什么药hcv9jop0ns3r.cn 血糖高能吃什么蔬菜hcv8jop1ns4r.cn
王朔为什么不娶徐静蕾hcv9jop8ns2r.cn 什么泡水喝可以降血糖hcv9jop6ns9r.cn esse是什么牌子的烟hcv9jop2ns8r.cn 眩晕看什么科hcv9jop8ns1r.cn 粉色裤子配什么上衣hcv7jop9ns0r.cn
蜈蚣为什么不能打死mmeoe.com 宝贝什么意思hcv8jop8ns1r.cn 仓鼠可以吃什么蔬菜hcv8jop6ns3r.cn 与虎谋皮什么意思hcv8jop3ns2r.cn 感性是什么意思hcv7jop5ns3r.cn
两腿抽筋是什么原因hcv8jop2ns4r.cn 活血化瘀吃什么hcv9jop3ns2r.cn 吐血是什么原因hcv8jop2ns2r.cn 口苦口干是什么原因引起的hcv8jop8ns3r.cn 赴汤蹈火什么意思hcv7jop6ns2r.cn
百度