贡米是什么米| 戊申五行属什么| 红花泡水喝有什么功效和作用| 做梦梦到地震预示着什么| 漏蛋白是什么原因造成的| 白酒是什么酿造的| 红斑狼疮是什么病| 喉咙不舒服挂什么科| 广西北海有什么好玩的地方| 梦见自己请客吃饭是什么意思| 颈椎挂什么科室| 什么植物最老实| 低烧是什么症状| 白手起家是什么意思| 吃完紧急避孕药不能吃什么| 洗牙挂什么科| c02是什么意思| 被银环蛇咬了有什么症状| 什么叫继发性高血压| 足贴为什么变黑出油| 脚掌麻木是什么原因| 小孩感冒发烧吃什么药| 下象棋有什么好处| butterfly什么意思| 上海的特产是什么| 排尿困难吃什么药好| 蛆是什么意思| 为什么会得风湿| 爱新觉罗改成什么姓了| 幽冥是什么意思| 露营需要准备什么东西| 为什么一直不怀孕是什么原因| 复辟什么意思| 浪子回头是什么意思| 水泡长什么样| 虾头部黄黄的是什么| 潮汐车道什么意思| 湿疹擦什么药膏好| 胃疼看病挂什么科| 瓷娃娃什么意思| 4月14日是什么星座| 猪朋狗友是什么意思| 眼睛干涩模糊用什么药| 喝水都长肉是什么原因| 经期可以喝什么| 刘备和刘表什么关系| 关羽姓什么| coco什么意思| 为什么经常长口腔溃疡| 空灵是什么意思| 躺枪是什么意思| 经常掏耳朵有什么危害| 蛋白粉什么牌子好| 血小板分布宽度偏低是什么意思| 青筋暴起是什么原因| 中指长痣代表什么| 吃什么对眼睛近视好| 梦到丢了一只鞋是什么意思| 肾阳虚的表现是什么| 鲑鱼是什么鱼| 球蛋白偏高是什么意思| NT是什么钱| 特应性皮炎用什么药膏| 道是什么意思| molly英文名什么意思| 郴州有什么好玩的景点| sids是什么意思| 不时之需是什么意思| 耳朵发炎吃什么消炎药| 骨密度高是什么意思| 经期提前是什么原因| 什么是静脉曲张| 吃什么盐比较好有利于健康| 总胆固醇高忌口什么| 脾虚胃热吃什么中成药| 扁桃体发炎引起的发烧吃什么药| 甲状腺低回声结节是什么意思| 低蛋白血症吃什么最快| 榴莲壳有什么用处| 黑色碳素笔是什么笔| tm是什么意思| 芬太尼是什么| 前方高能是什么意思| 忠于自己是什么意思| 为什么不能拜女娲娘娘| 隐形眼镜什么牌子好| 为什么崴脚了休息一晚脚更疼| 痦子是什么| 江西有什么景点| 散光是什么| 老是干咳嗽是什么原因| 儿童病毒感染吃什么药| 平方是什么意思| 血脂异常是什么意思| 胃痉挛有什么症状表现| 夏至吃什么食物| c7是什么意思| 半边脸发麻是什么原因| 什么叫做凤凰男| 油嘴滑舌是什么意思| 淋菌性尿道炎吃什么药| 健身有什么好处| 吃什么长个子最快| 干湿分离什么意思| 心虚吃什么补最快| 夏天用什么带饭不馊| 茶色尿是什么原因引起的| 东莞五行属什么| 哥德巴赫猜想是什么| 髓母细胞瘤是什么病| 高密度灶是什么意思| 肝内高回声什么意思| 生黄瓜吃了有什么好处| 鬼画符是什么意思| 什么叫精神出轨| 性格好是什么意思| 易蒙停是什么药| 女人银屑病一般都长什么地方| 为什么尽量不打免疫球蛋白| 戊戌是什么意思| 火热是什么意思| 梦见哭是什么意思| 羊驼吃什么| 梦见修路是什么预兆| 为什么吃鸽子刀口长得快| 古代男子成年叫什么| 指甲硬是什么原因| 智齿是什么| 作古是什么意思| 饭铲头是什么蛇| 细胞学说揭示了什么| 马脸是什么脸型| 小腿抽筋是什么原因引起的| 舌头起泡是什么原因引起的| 黄鼠狼是什么科| 盆腔炎用什么药效果好| 昔字五行属什么| 春季感冒吃什么药| 露水夫妻是什么意思| 水猴子长什么样子| 头发黄是什么原因| 高血压能喝什么饮料| 干咳吃什么药止咳效果好| 建设性意见是什么意思| 什么是bmi| 食物过敏吃什么药| 子宫破裂有什么危险| 什么运动减肥最快| 牙龈一直出血是什么原因| 豆瓣酱可以做什么菜| 哮喘吃什么食物好| pre是什么的缩写| 无冕之王是什么意思| 三点水及念什么| 吸血鬼怕什么| 手腕疼痛挂什么科| 灯笼裤配什么鞋子好看| 红细胞偏低是什么意思| 血小板低什么原因| 长发公主叫什么名字| 存是什么生肖| 97年出生属什么| 上火吃什么药| 四肢麻木是什么原因引起的| 初中学历能做什么工作| 1968年五行属什么| 煮奶茶用什么茶叶| 色拉油是什么| 1982属什么生肖| 什么是生源地| 偶发性房性早搏是什么意思| 什么什么生机| 荨麻疹有什么忌口吗| 胆结石忌吃什么| 走麦城是什么意思| 猪肝可以钓什么鱼| 萎缩性胃炎伴糜烂吃什么药| 蔡英文是什么党派| gfr医学上是什么意思| 饱和脂肪酸是什么意思| 净身高是什么意思| 肚子拉稀是什么原因| 最里面的牙齿叫什么牙| 什么是阴虚| 阑尾炎在什么位置疼| 丈二和尚摸不着头脑是什么意思| 1月19号什么星座| 雾灯什么时候开| 为什么老是抽筋| 扁平疣是什么样子图片| 有什么无什么的成语| 鸡米头是什么| 胎教什么时候开始最好| 载脂蛋白a1偏高是什么原因| 猥琐什么意思| 西字五行属什么| 什么食物好消化| 什么花香| 高血压头晕吃什么药| 掉头发是什么原因引起的| 跪安是什么意思| 假借是什么意思| 肾脏彩超能检查出什么| 痛风用什么消炎药最好| 脾虚湿蕴证是什么意思| 吃什么败火| 安全期一般是什么时候| 香火是什么意思| 牛排用什么油煎好吃| 北京为什么叫北平| 靶向治疗是什么意思| 气虚什么症状| 巨蟹座前面是什么星座| charleskeith什么牌子| 兰州人为什么要戴头巾| 三十而立四十不惑什么意思| 吃什么东西补肾| 舌苔发紫是什么原因| 花对什么| 做爱女生什么感觉| 第二性征是什么| 流鼻涕感冒吃什么药| 九个月的宝宝吃什么辅食食谱| 两个禾念什么| 孟力念什么| 心脏肥大吃什么药好| 孕妇上火什么降火最快| 荔枝什么时候成熟| 伤口感染化脓用什么药| 凡士林是什么东西| 掉钱了是什么预兆| 扦插是什么意思| 15天来一次月经是什么原因| 敬谢不敏是什么意思| Op是什么| 女性为什么不适合喝茉莉花茶| 脸色蜡黄是什么原因| 女性支原体阳性是什么意思| 全国政协副主席是什么级别| 经费是什么意思| 血糖低怎么办吃什么补| 尿蛋白质弱阳性是什么意思| 色盲的世界是什么颜色| 长目飞耳是什么动物| 拉肚子吃什么食物| 炒菜用什么油好吃又健康| 糖尿病人可以吃什么| 拉雪橇的狗是什么狗| 什么是超声检查| 养神经吃什么食物最好| 什么叫单反相机| 灌肠是什么| 女人每天吃什么抗衰老| 盗墓笔记它到底是什么| 大腿根疼挂什么科| 为什么歌曲| 乳房边缘一按就疼是什么原因| 骨盆前倾挂什么科| 更年期吃什么药调理| 长期尿黄可能是什么病| 心衰吃什么食物好| 月亮星座是什么| 刚出生的宝宝要注意什么| 被蚂蚁咬了涂什么药| 百度

高考9大新变化:这样做将取消录取资格 父母快看看

百度 角旗边放着的一捆炸弹非常显眼,2018俄罗斯世界杯标志也被拦腰斩断。

Mathematical optimization (alternatively spelled optimisation) or mathematical programming is the selection of a best element, with regard to some criteria, from some set of available alternatives.[1][2] It is generally divided into two subfields: discrete optimization and continuous optimization. Optimization problems arise in all quantitative disciplines from computer science and engineering[3] to operations research and economics, and the development of solution methods has been of interest in mathematics for centuries.[4]

Graph of a surface given by z = f(x, y) = ?(x2 + y2) + 4. The global maximum at (x, y, z) = (0, 0, 4) is indicated by a blue dot.
Nelder-Mead minimum search of Simionescu's function. Simplex vertices are ordered by their values, with 1 having the lowest ( best) value.

In the more general approach, an optimization problem consists of maximizing or minimizing a real function by systematically choosing input values from within an allowed set and computing the value of the function. The generalization of optimization theory and techniques to other formulations constitutes a large area of applied mathematics.

Optimization problems

edit

Optimization problems can be divided into two categories, depending on whether the variables are continuous or discrete:

An optimization problem can be represented in the following way:

Given: a function   from some set A to the real numbers
Sought: an element x0A such that f(x0) ≤ f(x) for all xA ("minimization") or such that f(x0) ≥ f(x) for all xA ("maximization").

Such a formulation is called an optimization problem or a mathematical programming problem (a term not directly related to computer programming, but still in use for example in linear programming – see History below). Many real-world and theoretical problems may be modeled in this general framework.

Since the following is valid:

 

it suffices to solve only minimization problems. However, the opposite perspective of considering only maximization problems would be valid, too.

Problems formulated using this technique in the fields of physics may refer to the technique as energy minimization,[5] speaking of the value of the function f as representing the energy of the system being modeled. In machine learning, it is always necessary to continuously evaluate the quality of a data model by using a cost function where a minimum implies a set of possibly optimal parameters with an optimal (lowest) error.

Typically, A is some subset of the Euclidean space  , often specified by a set of constraints, equalities or inequalities that the members of A have to satisfy. The domain A of f is called the search space or the choice set, while the elements of A are called candidate solutions or feasible solutions.

The function f is variously called an objective function, criterion function, loss function, cost function (minimization),[6] utility function or fitness function (maximization), or, in certain fields, an energy function or energy functional. A feasible solution that minimizes (or maximizes) the objective function is called an optimal solution.

In mathematics, conventional optimization problems are usually stated in terms of minimization.

A local minimum x* is defined as an element for which there exists some δ > 0 such that

 

the expression f(x*) ≤ f(x) holds;

that is to say, on some region around x* all of the function values are greater than or equal to the value at that element. Local maxima are defined similarly.

While a local minimum is at least as good as any nearby elements, a global minimum is at least as good as every feasible element. Generally, unless the objective function is convex in a minimization problem, there may be several local minima. In a convex problem, if there is a local minimum that is interior (not on the edge of the set of feasible elements), it is also the global minimum, but a nonconvex problem may have more than one local minimum not all of which need be global minima.

A large number of algorithms proposed for solving the nonconvex problems – including the majority of commercially available solvers – are not capable of making a distinction between locally optimal solutions and globally optimal solutions, and will treat the former as actual solutions to the original problem. Global optimization is the branch of applied mathematics and numerical analysis that is concerned with the development of deterministic algorithms that are capable of guaranteeing convergence in finite time to the actual optimal solution of a nonconvex problem.

Notation

edit

Optimization problems are often expressed with special notation. Here are some examples:

Minimum and maximum value of a function

edit

Consider the following notation:

 

This denotes the minimum value of the objective function x2 + 1, when choosing x from the set of real numbers  . The minimum value in this case is 1, occurring at x = 0.

Similarly, the notation

 

asks for the maximum value of the objective function 2x, where x may be any real number. In this case, there is no such maximum as the objective function is unbounded, so the answer is "infinity" or "undefined".

Optimal input arguments

edit

Consider the following notation:

 

or equivalently

 

This represents the value (or values) of the argument x in the interval (?∞,?1] that minimizes (or minimize) the objective function x2 + 1 (the actual minimum value of that function is not what the problem asks for). In this case, the answer is x = ?1, since x = 0 is infeasible, that is, it does not belong to the feasible set.

Similarly,

 

or equivalently

 

represents the {x, y} pair (or pairs) that maximizes (or maximize) the value of the objective function x cos y, with the added constraint that x lie in the interval [?5,5] (again, the actual maximum value of the expression does not matter). In this case, the solutions are the pairs of the form {5, 2kπ} and {?5, (2k + 1)π}, where k ranges over all integers.

Operators arg min and arg max are sometimes also written as argmin and argmax, and stand for argument of the minimum and argument of the maximum.

History

edit

Fermat and Lagrange found calculus-based formulae for identifying optima, while Newton and Gauss proposed iterative methods for moving towards an optimum.

The term "linear programming" for certain optimization cases was due to George B. Dantzig, although much of the theory had been introduced by Leonid Kantorovich in 1939. (Programming in this context does not refer to computer programming, but comes from the use of program by the United States military to refer to proposed training and logistics schedules, which were the problems Dantzig studied at that time.) Dantzig published the Simplex algorithm in 1947, and also John von Neumann and other researchers worked on the theoretical aspects of linear programming (like the theory of duality) around the same time.[7]

Other notable researchers in mathematical optimization include the following:

Major subfields

edit
  • Convex programming studies the case when the objective function is convex (minimization) or concave (maximization) and the constraint set is convex. This can be viewed as a particular case of nonlinear programming or as generalization of linear or convex quadratic programming.
    • Linear programming (LP), a type of convex programming, studies the case in which the objective function f is linear and the constraints are specified using only linear equalities and inequalities. Such a constraint set is called a polyhedron or a polytope if it is bounded.
    • Second-order cone programming (SOCP) is a convex program, and includes certain types of quadratic programs.
    • Semidefinite programming (SDP) is a subfield of convex optimization where the underlying variables are semidefinite matrices. It is a generalization of linear and convex quadratic programming.
    • Conic programming is a general form of convex programming. LP, SOCP and SDP can all be viewed as conic programs with the appropriate type of cone.
    • Geometric programming is a technique whereby objective and inequality constraints expressed as posynomials and equality constraints as monomials can be transformed into a convex program.
  • Integer programming studies linear programs in which some or all variables are constrained to take on integer values. This is not convex, and in general much more difficult than regular linear programming.
  • Quadratic programming allows the objective function to have quadratic terms, while the feasible set must be specified with linear equalities and inequalities. For specific forms of the quadratic term, this is a type of convex programming.
  • Fractional programming studies optimization of ratios of two nonlinear functions. The special class of concave fractional programs can be transformed to a convex optimization problem.
  • Nonlinear programming studies the general case in which the objective function or the constraints or both contain nonlinear parts. This may or may not be a convex program. In general, whether the program is convex affects the difficulty of solving it.
  • Stochastic programming studies the case in which some of the constraints or parameters depend on random variables.
  • Robust optimization is, like stochastic programming, an attempt to capture uncertainty in the data underlying the optimization problem. Robust optimization aims to find solutions that are valid under all possible realizations of the uncertainties defined by an uncertainty set.
  • Combinatorial optimization is concerned with problems where the set of feasible solutions is discrete or can be reduced to a discrete one.
  • Stochastic optimization is used with random (noisy) function measurements or random inputs in the search process.
  • Infinite-dimensional optimization studies the case when the set of feasible solutions is a subset of an infinite-dimensional space, such as a space of functions.
  • Heuristics and metaheuristics make few or no assumptions about the problem being optimized. Usually, heuristics do not guarantee that any optimal solution need be found. On the other hand, heuristics are used to find approximate solutions for many complicated optimization problems.
  • Constraint satisfaction studies the case in which the objective function f is constant (this is used in artificial intelligence, particularly in automated reasoning).
    • Constraint programming is a programming paradigm wherein relations between variables are stated in the form of constraints.
  • Disjunctive programming is used where at least one constraint must be satisfied but not all. It is of particular use in scheduling.
  • Space mapping is a concept for modeling and optimization of an engineering system to high-fidelity (fine) model accuracy exploiting a suitable physically meaningful coarse or surrogate model.

In a number of subfields, the techniques are designed primarily for optimization in dynamic contexts (that is, decision making over time):

Multi-objective optimization

edit

Adding more than one objective to an optimization problem adds complexity. For example, to optimize a structural design, one would desire a design that is both light and rigid. When two objectives conflict, a trade-off must be created. There may be one lightest design, one stiffest design, and an infinite number of designs that are some compromise of weight and rigidity. The set of trade-off designs that improve upon one criterion at the expense of another is known as the Pareto set. The curve created plotting weight against stiffness of the best designs is known as the Pareto frontier.

A design is judged to be "Pareto optimal" (equivalently, "Pareto efficient" or in the Pareto set) if it is not dominated by any other design: If it is worse than another design in some respects and no better in any respect, then it is dominated and is not Pareto optimal.

The choice among "Pareto optimal" solutions to determine the "favorite solution" is delegated to the decision maker. In other words, defining the problem as multi-objective optimization signals that some information is missing: desirable objectives are given but combinations of them are not rated relative to each other. In some cases, the missing information can be derived by interactive sessions with the decision maker.

Multi-objective optimization problems have been generalized further into vector optimization problems where the (partial) ordering is no longer given by the Pareto ordering.

Multi-modal or global optimization

edit

Optimization problems are often multi-modal; that is, they possess multiple good solutions. They could all be globally good (same cost function value) or there could be a mix of globally good and locally good solutions. Obtaining all (or at least some of) the multiple solutions is the goal of a multi-modal optimizer.

Classical optimization techniques due to their iterative approach do not perform satisfactorily when they are used to obtain multiple solutions, since it is not guaranteed that different solutions will be obtained even with different starting points in multiple runs of the algorithm.

Common approaches to global optimization problems, where multiple local extrema may be present include evolutionary algorithms, Bayesian optimization and simulated annealing.

Classification of critical points and extrema

edit

Feasibility problem

edit

The satisfiability problem, also called the feasibility problem, is just the problem of finding any feasible solution at all without regard to objective value. This can be regarded as the special case of mathematical optimization where the objective value is the same for every solution, and thus any solution is optimal.

Many optimization algorithms need to start from a feasible point. One way to obtain such a point is to relax the feasibility conditions using a slack variable; with enough slack, any starting point is feasible. Then, minimize that slack variable until the slack is null or negative.

Existence

edit

The extreme value theorem of Karl Weierstrass states that a continuous real-valued function on a compact set attains its maximum and minimum value. More generally, a lower semi-continuous function on a compact set attains its minimum; an upper semi-continuous function on a compact set attains its maximum point or view.

Necessary conditions for optimality

edit

One of Fermat's theorems states that optima of unconstrained problems are found at stationary points, where the first derivative or the gradient of the objective function is zero (see first derivative test). More generally, they may be found at critical points, where the first derivative or gradient of the objective function is zero or is undefined, or on the boundary of the choice set. An equation (or set of equations) stating that the first derivative(s) equal(s) zero at an interior optimum is called a 'first-order condition' or a set of first-order conditions.

Optima of equality-constrained problems can be found by the Lagrange multiplier method. The optima of problems with equality and/or inequality constraints can be found using the 'Karush–Kuhn–Tucker conditions'.

Sufficient conditions for optimality

edit

While the first derivative test identifies points that might be extrema, this test does not distinguish a point that is a minimum from one that is a maximum or one that is neither. When the objective function is twice differentiable, these cases can be distinguished by checking the second derivative or the matrix of second derivatives (called the Hessian matrix) in unconstrained problems, or the matrix of second derivatives of the objective function and the constraints called the bordered Hessian in constrained problems. The conditions that distinguish maxima, or minima, from other stationary points are called 'second-order conditions' (see 'Second derivative test'). If a candidate solution satisfies the first-order conditions, then the satisfaction of the second-order conditions as well is sufficient to establish at least local optimality.

Sensitivity and continuity of optima

edit

The envelope theorem describes how the value of an optimal solution changes when an underlying parameter changes. The process of computing this change is called comparative statics.

The maximum theorem of Claude Berge (1963) describes the continuity of an optimal solution as a function of underlying parameters.

Calculus of optimization

edit

For unconstrained problems with twice-differentiable functions, some critical points can be found by finding the points where the gradient of the objective function is zero (that is, the stationary points). More generally, a zero subgradient certifies that a local minimum has been found for minimization problems with convex functions and other locally Lipschitz functions, which meet in loss function minimization of the neural network. The positive-negative momentum estimation lets to avoid the local minimum and converges at the objective function global minimum.[8]

Further, critical points can be classified using the definiteness of the Hessian matrix: If the Hessian is positive definite at a critical point, then the point is a local minimum; if the Hessian matrix is negative definite, then the point is a local maximum; finally, if indefinite, then the point is some kind of saddle point.

Constrained problems can often be transformed into unconstrained problems with the help of Lagrange multipliers. Lagrangian relaxation can also provide approximate solutions to difficult constrained problems.

When the objective function is a convex function, then any local minimum will also be a global minimum. There exist efficient numerical techniques for minimizing convex functions, such as interior-point methods.

Global convergence

edit

More generally, if the objective function is not a quadratic function, then many optimization methods use other methods to ensure that some subsequence of iterations converges to an optimal solution. The first and still popular method for ensuring convergence relies on line searches, which optimize a function along one dimension. A second and increasingly popular method for ensuring convergence uses trust regions. Both line searches and trust regions are used in modern methods of non-differentiable optimization. Usually, a global optimizer is much slower than advanced local optimizers (such as BFGS), so often an efficient global optimizer can be constructed by starting the local optimizer from different starting points.

Computational optimization techniques

edit

To solve problems, researchers may use algorithms that terminate in a finite number of steps, or iterative methods that converge to a solution (on some specified class of problems), or heuristics that may provide approximate solutions to some problems (although their iterates need not converge).

Optimization algorithms

edit

Iterative methods

edit

The iterative methods used to solve problems of nonlinear programming differ according to whether they evaluate Hessians, gradients, or only function values. While evaluating Hessians (H) and gradients (G) improves the rate of convergence, for functions for which these quantities exist and vary sufficiently smoothly, such evaluations increase the computational complexity (or computational cost) of each iteration. In some cases, the computational complexity may be excessively high.

One major criterion for optimizers is just the number of required function evaluations as this often is already a large computational effort, usually much more effort than within the optimizer itself, which mainly has to operate over the N variables. The derivatives provide detailed information for such optimizers, but are even harder to calculate, e.g. approximating the gradient takes at least N+1 function evaluations. For approximations of the 2nd derivatives (collected in the Hessian matrix), the number of function evaluations is in the order of N2. Newton's method requires the 2nd-order derivatives, so for each iteration, the number of function calls is in the order of N2, but for a simpler pure gradient optimizer it is only N. However, gradient optimizers need usually more iterations than Newton's algorithm. Which one is best with respect to the number of function calls depends on the problem itself.

  • Methods that evaluate Hessians (or approximate Hessians, using finite differences):
    • Newton's method
    • Sequential quadratic programming: A Newton-based method for small-medium scale constrained problems. Some versions can handle large-dimensional problems.
    • Interior point methods: This is a large class of methods for constrained optimization, some of which use only (sub)gradient information and others of which require the evaluation of Hessians.
  • Methods that evaluate gradients, or approximate gradients in some way (or even subgradients):
    • Coordinate descent methods: Algorithms which update a single coordinate in each iteration
    • Conjugate gradient methods: Iterative methods for large problems. (In theory, these methods terminate in a finite number of steps with quadratic objective functions, but this finite termination is not observed in practice on finite–precision computers.)
    • Gradient descent (alternatively, "steepest descent" or "steepest ascent"): A (slow) method of historical and theoretical interest, which has had renewed interest for finding approximate solutions of enormous problems.
    • Subgradient methods: An iterative method for large locally Lipschitz functions using generalized gradients. Following Boris T. Polyak, subgradient–projection methods are similar to conjugate–gradient methods.
    • Bundle method of descent: An iterative method for small–medium-sized problems with locally Lipschitz functions, particularly for convex minimization problems (similar to conjugate gradient methods).
    • Ellipsoid method: An iterative method for small problems with quasiconvex objective functions and of great theoretical interest, particularly in establishing the polynomial time complexity of some combinatorial optimization problems. It has similarities with Quasi-Newton methods.
    • Conditional gradient method (Frank–Wolfe) for approximate minimization of specially structured problems with linear constraints, especially with traffic networks. For general unconstrained problems, this method reduces to the gradient method, which is regarded as obsolete (for almost all problems).
    • Quasi-Newton methods: Iterative methods for medium-large problems (e.g. N<1000).
    • Simultaneous perturbation stochastic approximation (SPSA) method for stochastic optimization; uses random (efficient) gradient approximation.
  • Methods that evaluate only function values: If a problem is continuously differentiable, then gradients can be approximated using finite differences, in which case a gradient-based method can be used.

Heuristics

edit

Besides (finitely terminating) algorithms and (convergent) iterative methods, there are heuristics. A heuristic is any algorithm which is not guaranteed (mathematically) to find the solution, but which is nevertheless useful in certain practical situations. List of some well-known heuristics:

Applications

edit

Mechanics

edit

Problems in rigid body dynamics (in particular articulated rigid body dynamics) often require mathematical programming techniques, since you can view rigid body dynamics as attempting to solve an ordinary differential equation on a constraint manifold;[9] the constraints are various nonlinear geometric constraints such as "these two points must always coincide", "this surface must not penetrate any other", or "this point must always lie somewhere on this curve". Also, the problem of computing contact forces can be done by solving a linear complementarity problem, which can also be viewed as a QP (quadratic programming) problem.

Many design problems can also be expressed as optimization programs. This application is called design optimization. One subset is the engineering optimization, and another recent and growing subset of this field is multidisciplinary design optimization, which, while useful in many problems, has in particular been applied to aerospace engineering problems.

This approach may be applied in cosmology and astrophysics.[10]

Economics and finance

edit

Economics is closely enough linked to optimization of agents that an influential definition relatedly describes economics qua science as the "study of human behavior as a relationship between ends and scarce means" with alternative uses.[11] Modern optimization theory includes traditional optimization theory but also overlaps with game theory and the study of economic equilibria. The Journal of Economic Literature codes classify mathematical programming, optimization techniques, and related topics under JEL:C61-C63.

In microeconomics, the utility maximization problem and its dual problem, the expenditure minimization problem, are economic optimization problems. Insofar as they behave consistently, consumers are assumed to maximize their utility, while firms are usually assumed to maximize their profit. Also, agents are often modeled as being risk-averse, thereby preferring to avoid risk. Asset prices are also modeled using optimization theory, though the underlying mathematics relies on optimizing stochastic processes rather than on static optimization. International trade theory also uses optimization to explain trade patterns between nations. The optimization of portfolios is an example of multi-objective optimization in economics.

Since the 1970s, economists have modeled dynamic decisions over time using control theory.[12] For example, dynamic search models are used to study labor-market behavior.[13] A crucial distinction is between deterministic and stochastic models.[14] Macroeconomists build dynamic stochastic general equilibrium (DSGE) models that describe the dynamics of the whole economy as the result of the interdependent optimizing decisions of workers, consumers, investors, and governments.[15][16]

Electrical engineering

edit

Some common applications of optimization techniques in electrical engineering include active filter design,[17] stray field reduction in superconducting magnetic energy storage systems, space mapping design of microwave structures,[18] handset antennas,[19][20][21] electromagnetics-based design. Electromagnetically validated design optimization of microwave components and antennas has made extensive use of an appropriate physics-based or empirical surrogate model and space mapping methodologies since the discovery of space mapping in 1993.[22][23] Optimization techniques are also used in power-flow analysis.[24]

Civil engineering

edit

Optimization has been widely used in civil engineering. Construction management and transportation engineering are among the main branches of civil engineering that heavily rely on optimization. The most common civil engineering problems that are solved by optimization are cut and fill of roads, life-cycle analysis of structures and infrastructures,[25] resource leveling,[26][27] water resource allocation, traffic management[28] and schedule optimization.

Operations research

edit

Another field that uses optimization techniques extensively is operations research.[29] Operations research also uses stochastic modeling and simulation to support improved decision-making. Increasingly, operations research uses stochastic programming to model dynamic decisions that adapt to events; such problems can be solved with large-scale optimization and stochastic optimization methods.

Control engineering

edit

Mathematical optimization is used in much modern controller design. High-level controllers such as model predictive control (MPC) or real-time optimization (RTO) employ mathematical optimization. These algorithms run online and repeatedly determine values for decision variables, such as choke openings in a process plant, by iteratively solving a mathematical optimization problem including constraints and a model of the system to be controlled.

Geophysics

edit

Optimization techniques are regularly used in geophysical parameter estimation problems. Given a set of geophysical measurements, e.g. seismic recordings, it is common to solve for the physical properties and geometrical shapes of the underlying rocks and fluids. The majority of problems in geophysics are nonlinear with both deterministic and stochastic methods being widely used.

Molecular modeling

edit

Nonlinear optimization methods are widely used in conformational analysis.

Computational systems biology

edit

Optimization techniques are used in many facets of computational systems biology such as model building, optimal experimental design, metabolic engineering, and synthetic biology.[30] Linear programming has been applied to calculate the maximal possible yields of fermentation products,[30] and to infer gene regulatory networks from multiple microarray datasets[31] as well as transcriptional regulatory networks from high-throughput data.[32] Nonlinear programming has been used to analyze energy metabolism[33] and has been applied to metabolic engineering and parameter estimation in biochemical pathways.[34]

Machine learning

edit

Solvers

edit

See also

edit

Notes

edit
  1. ^ "The Nature of Mathematical Programming Archived 2025-08-07 at the Wayback Machine," Mathematical Programming Glossary, INFORMS Computing Society.
  2. ^ "Mathematical Programming: An Overview" (PDF). Retrieved 26 April 2024.
  3. ^ Martins, Joaquim R. R. A.; Ning, Andrew (2025-08-07). Engineering Design Optimization. Cambridge University Press. ISBN 978-1108833417.
  4. ^ Du, D. Z.; Pardalos, P. M.; Wu, W. (2008). "History of Optimization". In Floudas, C.; Pardalos, P. (eds.). Encyclopedia of Optimization. Boston: Springer. pp. 1538–1542.
  5. ^ Hartmann, Alexander K; Rieger, Heiko (2002). Optimization algorithms in physics. Citeseer.
  6. ^ Erwin Diewert, W. (2017), "Cost Functions", The New Palgrave Dictionary of Economics, London: Palgrave Macmillan UK, pp. 1–12, doi:10.1057/978-1-349-95121-5_659-2, ISBN 978-1-349-95121-5, retrieved 2025-08-07
  7. ^ Bixby, Robert E (2012). "A brief history of linear and mixed-integer programming computation" (PDF). Documenta Mathematica. Documenta Mathematica Series. 2012: 107–121. doi:10.4171/dms/6/16. ISBN 978-3-936609-58-5.
  8. ^ Abdulkadirov, R.; Lyakhov, P.; Bergerman, M.; Reznikov, D. (February 2024). "Satellite image recognition using ensemble neural networks and difference gradient positive-negative momentum". Chaos, Solitons & Fractals. 179 114432. Bibcode:2024CSF...17914432A. doi:10.1016/j.chaos.2023.114432.
  9. ^ Vereshchagin, A.F. (1989). "Modelling and control of motion of manipulation robots". Soviet Journal of Computer and Systems Sciences. 27 (5): 29–38.
  10. ^ Haggag, S.; Desokey, F.; Ramadan, M. (2017). "A cosmological inflationary model using optimal control". Gravitation and Cosmology. 23 (3): 236–239. Bibcode:2017GrCo...23..236H. doi:10.1134/S0202289317030069. ISSN 1995-0721. S2CID 125980981.
  11. ^ Lionel Robbins (1935, 2nd ed.) An Essay on the Nature and Significance of Economic Science, Macmillan, p. 16.
  12. ^ Dorfman, Robert (1969). "An Economic Interpretation of Optimal Control Theory". American Economic Review. 59 (5): 817–831. JSTOR 1810679.
  13. ^ Sargent, Thomas J. (1987). "Search". Dynamic Macroeconomic Theory. Harvard University Press. pp. 57–91. ISBN 9780674043084.
  14. ^ A.G. Malliaris (2008). "stochastic optimal control," The New Palgrave Dictionary of Economics, 2nd Edition. Abstract Archived 2025-08-07 at the Wayback Machine.
  15. ^ Rotemberg, Julio; Woodford, Michael (1997). "An Optimization-based Econometric Framework for the Evaluation of Monetary Policy" (PDF). NBER Macroeconomics Annual. 12: 297–346. doi:10.2307/3585236. JSTOR 3585236.
  16. ^ From The New Palgrave Dictionary of Economics (2008), 2nd Edition with Abstract links:
    ? "numerical optimization methods in economics" by Karl Schmedders
    ? "convex programming" by Lawrence E. Blume
    ? "Arrow–Debreu model of general equilibrium" by John Geanakoplos.
  17. ^ De, Bishnu Prasad; Kar, R.; Mandal, D.; Ghoshal, S.P. (2025-08-07). "Optimal selection of components value for analog active filter design using simplex particle swarm optimization". International Journal of Machine Learning and Cybernetics. 6 (4): 621–636. doi:10.1007/s13042-014-0299-0. ISSN 1868-8071. S2CID 13071135.
  18. ^ Koziel, Slawomir; Bandler, John W. (January 2008). "Space Mapping With Multiple Coarse Models for Optimization of Microwave Components". IEEE Microwave and Wireless Components Letters. 18 (1): 1–3. Bibcode:2008IMWCL..18L1969K. CiteSeerX 10.1.1.147.5407. doi:10.1109/LMWC.2007.911969. S2CID 11086218.
  19. ^ Tu, Sheng; Cheng, Qingsha S.; Zhang, Yifan; Bandler, John W.; Nikolova, Natalia K. (July 2013). "Space Mapping Optimization of Handset Antennas Exploiting Thin-Wire Models". IEEE Transactions on Antennas and Propagation. 61 (7): 3797–3807. Bibcode:2013ITAP...61.3797T. doi:10.1109/TAP.2013.2254695.
  20. ^ N. Friedrich, “Space mapping outpaces EM optimization in handset-antenna design,” microwaves&rf, August 30, 2013.
  21. ^ Cervantes-González, Juan C.; Rayas-Sánchez, José E.; López, Carlos A.; Camacho-Pérez, José R.; Brito-Brito, Zabdiel; Chávez-Hurtado, José L. (February 2016). "Space mapping optimization of handset antennas considering EM effects of mobile phone components and human body". International Journal of RF and Microwave Computer-Aided Engineering. 26 (2): 121–128. doi:10.1002/mmce.20945. S2CID 110195165.
  22. ^ Bandler, J.W.; Biernacki, R.M.; Chen, Shao Hua; Grobelny, P.A.; Hemmers, R.H. (1994). "Space mapping technique for electromagnetic optimization". IEEE Transactions on Microwave Theory and Techniques. 42 (12): 2536–2544. Bibcode:1994ITMTT..42.2536B. doi:10.1109/22.339794.
  23. ^ Bandler, J.W.; Biernacki, R.M.; Shao Hua Chen; Hemmers, R.H.; Madsen, K. (1995). "Electromagnetic optimization exploiting aggressive space mapping". IEEE Transactions on Microwave Theory and Techniques. 43 (12): 2874–2882. Bibcode:1995ITMTT..43.2874B. doi:10.1109/22.475649.
  24. ^ Convex relaxation of optimal power flow: A tutorial. 2013 iREP Symposium on Bulk Power System Dynamics and Control. doi:10.1109/IREP.2013.6629391.
  25. ^ Piryonesi, Sayed Madeh; Tavakolan, Mehdi (9 January 2017). "A mathematical programming model for solving cost-safety optimization (CSO) problems in the maintenance of structures". KSCE Journal of Civil Engineering. 21 (6): 2226–2234. Bibcode:2017KSJCE..21.2226P. doi:10.1007/s12205-017-0531-z. S2CID 113616284.
  26. ^ Hegazy, Tarek (June 1999). "Optimization of Resource Allocation and Leveling Using Genetic Algorithms". Journal of Construction Engineering and Management. 125 (3): 167–175. doi:10.1061/(ASCE)0733-9364(1999)125:3(167).
  27. ^ Piryonesi, S. Madeh; Nasseri, Mehran; Ramezani, Abdollah (9 July 2018). "Piryonesi, S. M., Nasseri, M., & Ramezani, A. (2018). Resource leveling in construction projects with activity splitting and resource constraints: a simulated annealing optimization". Canadian Journal of Civil Engineering. 46: 81–86. doi:10.1139/cjce-2017-0670. hdl:1807/93364. S2CID 116480238.
  28. ^ Herty, M.; Klar, A. (2025-08-07). "Modeling, Simulation, and Optimization of Traffic Flow Networks". SIAM Journal on Scientific Computing. 25 (3): 1066–1087. Bibcode:2003SJSC...25.1066H. doi:10.1137/S106482750241459X. ISSN 1064-8275.
  29. ^ "New force on the political scene: the Seophonisten". Archived from the original on 18 December 2014. Retrieved 14 September 2013.
  30. ^ a b Papoutsakis, Eleftherios Terry (February 1984). "Equations and calculations for fermentations of butyric acid bacteria". Biotechnology and Bioengineering. 26 (2): 174–187. Bibcode:1984BiotB..26..174P. doi:10.1002/bit.260260210. ISSN 0006-3592. PMID 18551704. S2CID 25023799.
  31. ^ Wang, Yong; Joshi, Trupti; Zhang, Xiang-Sun; Xu, Dong; Chen, Luonan (2025-08-07). "Inferring gene regulatory networks from multiple microarray datasets". Bioinformatics. 22 (19): 2413–2420. doi:10.1093/bioinformatics/btl396. ISSN 1460-2059. PMID 16864593.
  32. ^ Wang, Rui-Sheng; Wang, Yong; Zhang, Xiang-Sun; Chen, Luonan (2025-08-07). "Inferring transcriptional regulatory networks from high-throughput data". Bioinformatics. 23 (22): 3056–3064. doi:10.1093/bioinformatics/btm465. ISSN 1460-2059. PMID 17890736.
  33. ^ Vo, Thuy D.; Paul Lee, W.N.; Palsson, Bernhard O. (May 2007). "Systems analysis of energy metabolism elucidates the affected respiratory chain complex in Leigh's syndrome". Molecular Genetics and Metabolism. 91 (1): 15–22. doi:10.1016/j.ymgme.2007.01.012. ISSN 1096-7192. PMID 17336115.
  34. ^ Mendes, P.; Kell, D. (1998). "Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation". Bioinformatics. 14 (10): 869–883. doi:10.1093/bioinformatics/14.10.869. ISSN 1367-4803. PMID 9927716.

Further reading

edit
  • Boyd, Stephen P.; Vandenberghe, Lieven (2004). Convex Optimization. Cambridge: Cambridge University Press. ISBN 0-521-83378-7.
  • Gill, P. E.; Murray, W.; Wright, M. H. (1982). Practical Optimization. London: Academic Press. ISBN 0-12-283952-8.
  • Lee, Jon (2004). A First Course in Combinatorial Optimization. Cambridge University Press. ISBN 0-521-01012-8.
  • Nocedal, Jorge; Wright, Stephen J. (2006). Numerical Optimization (2nd ed.). Berlin: Springer. ISBN 0-387-30303-0.
  • G.L. Nemhauser, A.H.G. Rinnooy Kan and M.J. Todd (eds.): Optimization, Elsevier, (1989).
  • Stanislav Walukiewicz:Integer Programming, Springer,ISBN 978-9048140688, (1990).
  • R. Fletcher: Practical Methods of Optimization, 2nd Ed., Wiley, (2000).
  • Panos M. Pardalos:Approximation and Complexity in Numerical Optimization: Continuous and Discrete Problems, Springer,ISBN 978-1-44194829-8, (2000).
  • Xiaoqi Yang, K. L. Teo, Lou Caccetta (Eds.):Optimization Methods and Applications,Springer, ISBN 978-0-79236866-3, (2001).
  • Panos M. Pardalos, and Mauricio G. C. Resende(Eds.):Handbook of Applied Optimization、Oxford Univ Pr on Demand, ISBN 978-0-19512594-8, (2002).
  • Wil Michiels, Emile Aarts, and Jan Korst: Theoretical Aspects of Local Search, Springer, ISBN 978-3-64207148-5, (2006).
  • Der-San Chen, Robert G. Batson, and Yu Dang: Applied Integer Programming: Modeling and Solution,Wiley,ISBN 978-0-47037306-4, (2010).
  • Mykel J. Kochenderfer and Tim A. Wheeler: Algorithms for Optimization, The MIT Press, ISBN 978-0-26203942-0, (2019).
  • Vladislav Bukshtynov: Optimization: Success in Practice, CRC Press (Taylor & Francis), ISBN 978-1-03222947-8, (2023) .
  • Rosario Toscano: Solving Optimization Problems with the Heuristic Kalman Algorithm: New Stochastic Methods, Springer, ISBN 978-3-031-52458-5 (2024).
  • Immanuel M. Bomze, Tibor Csendes, Reiner Horst and Panos M. Pardalos: Developments in Global Optimization, Kluwer Academic, ISBN 978-1-4419-4768-0 (2010).
edit
牙疼是什么病的前兆 肺结核是什么引起的 什么布剪不断 尿是绿色的是什么原因 为什么手机会发烫
100岁是什么之年 喝脱脂牛奶有什么好处 什么是等位基因 虎女配什么生肖最好 脑梗的人适合吃什么食物
争辩的近义词是什么 吃坏东西肚子疼吃什么药 拉肚子吃什么水果 头臀径是指什么 75b是什么罩杯
90年属于什么生肖 大人积食吃什么药 脖子疼什么原因 花中皇后是什么花 回应是什么意思
懦弱的反义词是什么hcv9jop8ns2r.cn 中药学专业学什么hcv9jop3ns3r.cn 孕妇血糖高可以吃什么水果hcv9jop1ns3r.cn 舅舅是什么关系hcv9jop0ns2r.cn 利普刀是什么手术hcv8jop7ns1r.cn
睡觉经常流口水是什么原因baiqunet.com 袁隆平是什么家hcv9jop1ns6r.cn 梁字五行属什么hcv9jop0ns7r.cn 皮肤一碰就红是什么原因hcv7jop9ns1r.cn 打喷嚏是什么预兆hcv8jop7ns8r.cn
男命正印代表什么hcv9jop6ns5r.cn 脚拇指外翻是什么原因造成的hcv9jop5ns1r.cn 14年属什么生肖hcv8jop8ns6r.cn 清热解毒煲什么汤最好hcv8jop6ns1r.cn 梦到拉粑粑是什么意思hcv9jop3ns3r.cn
白细胞减少吃什么药hcv7jop7ns3r.cn 例假少吃什么能让量多hcv7jop7ns2r.cn 台风什么时候登陆hcv9jop4ns8r.cn 双性是什么意思xianpinbao.com 二甲双胍什么时候吃hcv8jop6ns6r.cn
百度