体悟是什么意思| 肾外肾盂是什么意思| 眼轴是什么| 高铁上不能带什么| apf值是什么意思| 处女什么意思| 右边脸疼是什么原因| 字读什么| 作精是什么意思| 什么是周期| 听之任之是什么意思| 从小一起长大的姐妹叫什么| 爬山是什么意思| 菜花是什么| 思维跳脱是什么意思| 什么叫前列腺钙化| 运动后恶心想吐是什么原因| 做什么生意挣钱| 血滴子是什么意思| 传媒公司是干什么的| 按摩椅什么牌子最好| 阴茎破皮擦什么药| 散瞳快散和慢散有什么区别| 阴道出血是什么原因引起的| 阴湿是什么病| 糙米是什么米| 蚂蚁代表什么风水| edv是什么意思| 禁锢是什么意思| 病毒性肺炎吃什么药| 低保是什么| 油菜花是什么季节开的| 决明子有什么作用| 预激综合征是什么病| 每天吃洋葱有什么好处| 眼睛出现飞蚊症什么原因怎么办| 什么是情绪| 咬指甲是什么心理疾病| 车船税是什么意思每年都交吗| 枫字五行属什么| 姓兰的是什么民族| 兰花用什么肥料最好| 黑加仑是什么| 凉茶是什么茶| 脂浊是什么意思| 什么样的风景| 反刍是什么意思| 小孩什么时候说话| 鲁肃的性格特点是什么| bpd是胎儿的什么| 前列腺炎吃什么药最有效| 胃发胀是什么原因| 东宫是什么意思| 芍药花什么时候开花| 维生素b5又叫什么| 科技布是什么材质| 97年属牛的是什么命| ct是检查什么的| 参加白事回来注意什么| 8月3日是什么日子| 三部曲是什么意思| 梅毒的病原体是什么| 心脏病吃什么水果最好| 乳腺看什么科室| 黄体破裂有什么症状| 栋梁之材是什么意思| 什么的珍珠| 生理期吃什么| 护士是干什么的| 6.28什么星座| 2222是什么意思| 五脏六腑是指什么| 学分是什么意思| 深入交流是什么意思| 牙龈出血是什么病征兆| 低碳生活是什么意思| 老人身上痒是什么原因| 拍拖什么意思| 吃惊的近义词是什么| 什么是肌张力| 本科一批和本科二批有什么区别| 胃溃疡吃什么中成药| 怀孕吃鹅蛋有什么好处| vc什么时候吃最好| 沉鱼落雁闭月羞花是什么意思| 一进去就射是什么原因| 副营级是什么军衔| 脸肿是什么病| 什么是代偿| 花生不能和什么一起吃| 什么寒什么冻| 思量是什么意思| 晚上吃什么水果减肥效果最好| 口干舌燥是什么意思| 中秋节是什么时候| 缺失是什么意思| 女人吃维生素b有什么好处| 妇科炎症吃什么消炎药效果好| 因特网是什么意思| 阳起石是什么东西| c肽测定是什么意思| 温良是什么意思| 两个b型血能生出什么血型的孩子| aca是什么意思| 处女座上升星座是什么| 推介会是什么意思| 什么叫二婚线| 处女座上升星座是什么| 生吃苦瓜有什么好处和坏处| 甲亢是什么症状| 什么是鸡冠油| 筷子掉地上是什么征兆| 转归是什么意思| 肾功能不好吃什么药调理| 宫颈粘液栓是什么样的| 文科女生学什么专业就业前景好| 什么是二型糖尿病| 什么东西燃烧脂肪最快| 别开生面是什么意思| 是什么颜色| 小雪时节吃什么| 海马用什么呼吸| 园字五行属什么| 小便黄吃什么药| 什么是地震| 打太极是什么意思| 大唐集团什么级别| 尿液里白细胞高是什么原因| 值神是什么意思| 现在什么季节| 名人轶事是什么意思| 腿麻是什么病的前兆| 信佛有什么好处| 临床医学主要学什么| 呼吸内科主要看什么病| 乳腺结节摸着什么感觉| 血糖高吃什么降得快| 什么叫两会| 来例假肚子疼是什么原因| 百合是什么颜色| 宝宝发烧吃什么药| 缺钾挂什么科| 大宗物品是什么意思| 世界上最贵的车是什么车| 水冲脉见于什么病| 为什么牙齿晚上痛白天不痛| 什么都别说| 12月21号是什么星座| 妄想什么意思| 记忆力下降是什么原因引起的| 能耐是什么意思| 疟疾是什么意思| 恶性贫血是什么意思| 皮肤黄是什么原因| 彪子是什么意思| 扁平足看什么科| 三个吉念什么| 锋芒毕露什么意思| 大便潜血弱阳性是什么原因| 什么是慢性病| 月经前有褐色分泌物是什么原因| b-h是什么药| 鲜花又什么又什么| 双相情感障碍是什么| buffalo是什么牌子| 热疖痈毒是什么意思| 巧克力不能和什么一起吃| 10月24是什么星座| 吃毛蛋有什么好处| 教师节送什么礼品| 妈妈的姐妹叫什么| 乳腺结节应该挂什么科| 肾结石有什么症状表现| 月经量多是什么原因导致的| 小孩子睡觉流口水是什么原因| 为什么腰痛| 干咳是什么原因引起的| 腋下出汗有异味是什么原因| 靓字五行属什么| 蛇胆疮是什么原因引起的| 包皮溃烂用什么药| 社会是什么| 糖尿病吃什么| 去湿气吃什么中药| 孕妇缺碘对胎儿有什么影响| 8月5日什么星座| 阿里巴巴是干什么的| 三角梅什么时候换盆| 头发不长是什么原因| 周围神经病是什么症状| 什么坚果适合减肥吃| 213什么星座| 广州有什么玩的| 郭字五行属什么| 碉堡是什么意思啊| 为什么会得多囊卵巢| 女性漏尿吃什么药最好| 为什么肚子会隐隐作痛| 左氧氟沙星的功效是什么| 四面楚歌是什么意思| pas是什么意思| 肌肉溶解是什么意思| 太容易出汗是什么原因| 拿乔是什么意思| 生蚝和什么不能一起吃| cha什么意思| 什么是应届毕业生| 9月三号是什么日子| 为什么喝纯牛奶会拉肚子| 去美容院洗脸有什么好处| 中性粒细胞偏高是什么原因| 人力资源是什么意思| 流鼻血是什么引起的| 世子是什么意思| 子宫瘢痕憩室是什么病| 不什么| 女人细菌感染什么原因引起的| 骨质增生是什么原因引起的| 羊水是什么味道| 兔子能吃什么水果| 梦见鞋丢了是什么意思| 尿酸高平时要注意什么| 闭合是什么意思| 头发拉焦了有什么补救| 高血压2级是什么意思| 窦性心动过速吃什么药| 凌迟是什么| 什么瓜不能吃| 梦见辣椒是什么预兆| 湿邪是什么意思| 风平浪静是什么生肖| 冷漠是什么意思| 丝状疣挂什么科| 十月初七是什么星座| 脚为什么会臭| 玉米芯有什么用途| n1是什么意思| 乳清蛋白是什么| 吃什么降火| 花椒水泡脚有什么好处| 脑膜炎吃什么药| 洛神花茶有什么功效| mirror什么意思| 狗吃什么食物| 赫是什么意思| 怀孕16周要做什么检查| 小燕子吃什么食物| 绿豆配什么打豆浆最好| 鼻甲肥大吃什么药最好| 大牙什么时候换| 手指脱皮是缺什么维生素| 六味地黄丸什么功效| 病人出院送什么花| 左侧腰疼是什么原因| 湿气重不能吃什么食物| 吃辣拉肚子是什么原因| 仓鼠是什么科动物| 海东青是什么| 蘸什么意思| 雨落心尘是什么意思| 派石项链有什么功效| 做梦梦见死去的亲人是什么意思| 黄体可能是什么意思啊| 阴毛瘙痒是什么原因| 百度

阿里系数澜科技成立半年获两轮融资的秘诀是什么?

百度 詹才芳在军内是老资格,小时候因为家里穷,父母在很早的时候就去世了,只留下了詹才芳和姐姐相依为命,后来詹才芳背井离乡去谋生,在途中遇到了我党的创始人之一董必武。

In graph theory, an independent set, stable set, coclique or anticlique is a set of vertices in a graph, no two of which are adjacent. That is, it is a set of vertices such that for every two vertices in , there is no edge connecting the two. Equivalently, each edge in the graph has at most one endpoint in . A set is independent if and only if it is a clique in the graph's complement. The size of an independent set is the number of vertices it contains. Independent sets have also been called "internally stable sets", of which "stable set" is a shortening.[1]

The nine blue vertices form a maximum independent set for the Generalized Petersen graph GP(12,4).

A maximal independent set is an independent set that is not a proper subset of any other independent set.

A maximum independent set is an independent set of largest possible size for a given graph . This size is called the independence number of and is usually denoted by .[2] The optimization problem of finding such a set is called the maximum independent set problem. It is a strongly NP-hard problem.[3] As such, it is unlikely that there exists an efficient algorithm for finding a maximum independent set of a graph.

Every maximum independent set also is maximal, but the converse implication does not necessarily hold.

Properties

edit

Relationship to other graph parameters

edit

A set is independent if and only if it is a clique in the graph’s complement, so the two concepts are complementary. In fact, sufficiently large graphs with no large cliques have large independent sets, a theme that is explored in Ramsey theory.

A set is independent if and only if its complement is a vertex cover.[4] Therefore, the sum of the size of the largest independent set ? and the size of a minimum vertex cover ? is equal to the number of vertices in the graph.

A vertex coloring of a graph ? corresponds to a partition of its vertex set into independent subsets. Hence the minimal number of colors needed in a vertex coloring, the chromatic number ?, is at least the quotient of the number of vertices in ? and the independent number ?.

In a bipartite graph with no isolated vertices, the number of vertices in a maximum independent set equals the number of edges in a minimum edge covering; this is K?nig's theorem.

Maximal independent set

edit

An independent set that is not a proper subset of another independent set is called maximal. Such sets are dominating sets. Every graph contains at most 3n/3 maximal independent sets,[5] but many graphs have far fewer. The number of maximal independent sets in n-vertex cycle graphs is given by the Perrin numbers, and the number of maximal independent sets in n-vertex path graphs is given by the Padovan sequence.[6] Therefore, both numbers are proportional to powers of 1.324718..., the plastic ratio.

Finding independent sets

edit

In computer science, several computational problems related to independent sets have been studied.

  • In the maximum independent set problem, the input is an undirected graph, and the output is a maximum independent set in the graph. If there are multiple maximum independent sets, only one need be output. This problem is sometimes referred to as "vertex packing".
  • In the maximum-weight independent set problem, the input is an undirected graph with weights on its vertices and the output is an independent set with maximum total weight. The maximum independent set problem is the special case in which all weights are one.
  • In the maximal independent set listing problem, the input is an undirected graph, and the output is a list of all its maximal independent sets. The maximum independent set problem may be solved using as a subroutine an algorithm for the maximal independent set listing problem, because the maximum independent set must be included among all the maximal independent sets.
  • In the independent set decision problem, the input is an undirected graph and a number k, and the output is a Boolean value: true if the graph contains an independent set of size k, and false otherwise.

The first three of these problems are all important in practical applications; the independent set decision problem is not, but is necessary in order to apply the theory of NP-completeness to problems related to independent sets.

Maximum independent sets and maximum cliques

edit

The independent set problem and the clique problem are complementary: a clique in G is an independent set in the complement graph of G and vice versa. Therefore, many computational results may be applied equally well to either problem. For example, the results related to the clique problem have the following corollaries:

  • The independent set decision problem is NP-complete, and hence it is not believed that there is an efficient algorithm for solving it.
  • The maximum independent set problem is NP-hard and it is also hard to approximate.

Despite the close relationship between maximum cliques and maximum independent sets in arbitrary graphs, the independent set and clique problems may be very different when restricted to special classes of graphs. For instance, for sparse graphs (graphs in which the number of edges is at most a constant times the number of vertices in any subgraph), the maximum clique has bounded size and may be found exactly in linear time;[7] however, for the same classes of graphs, or even for the more restricted class of bounded degree graphs, finding the maximum independent set is MAXSNP-complete, implying that, for some constant c (depending on the degree) it is NP-hard to find an approximate solution that comes within a factor of c of the optimum.[8]

Exact algorithms

edit

The maximum independent set problem is NP-hard. However, it can be solved more efficiently than the O(n2?2n) time that would be given by a naive brute force algorithm that examines every vertex subset and checks whether it is an independent set.

As of 2017 it can be solved in time O(1.1996n) using polynomial space.[9] When restricted to graphs with maximum degree 3, it can be solved in time O(1.0836n).[10]

For many classes of graphs, a maximum weight independent set may be found in polynomial time. Famous examples are claw-free graphs,[11] P5-free graphs[12] and perfect graphs.[13] For chordal graphs, a maximum weight independent set can be found in linear time.[14]

Modular decomposition is a good tool for solving the maximum weight independent set problem; the linear time algorithm on cographs is the basic example for that. Another important tool are clique separators as described by Tarjan.[15]

K?nig's theorem implies that in a bipartite graph the maximum independent set can be found in polynomial time using a bipartite matching algorithm.

Approximation algorithms

edit

In general, the maximum independent set problem cannot be approximated to a constant factor in polynomial time (unless P = NP). In fact, Max Independent Set in general is Poly-APX-complete, meaning it is as hard as any problem that can be approximated to a polynomial factor.[16] However, there are efficient approximation algorithms for restricted classes of graphs.

In planar graphs

edit

In planar graphs, the maximum independent set may be approximated to within any approximation ratio c?<?1 in polynomial time; similar polynomial-time approximation schemes exist in any family of graphs closed under taking minors.[17]

In bounded degree graphs

edit

In bounded degree graphs, effective approximation algorithms are known with approximation ratios that are constant for a fixed value of the maximum degree; for instance, a greedy algorithm that forms a maximal independent set by, at each step, choosing the minimum degree vertex in the graph and removing its neighbors, achieves an approximation ratio of (Δ+2)/3 on graphs with maximum degree?Δ.[18] Approximation hardness bounds for such instances were proven in Berman & Karpinski (1999). Indeed, even Max Independent Set on 3-regular 3-edge-colorable graphs is APX-complete.[19]

In interval intersection graphs

edit

An interval graph is a graph in which the nodes are 1-dimensional intervals (e.g. time intervals) and there is an edge between two intervals if and only if they intersect. An independent set in an interval graph is just a set of non-overlapping intervals. The problem of finding maximum independent sets in interval graphs has been studied, for example, in the context of job scheduling: given a set of jobs that has to be executed on a computer, find a maximum set of jobs that can be executed without interfering with each other. This problem can be solved exactly in polynomial time using earliest deadline first scheduling.

In geometric intersection graphs

edit

A geometric intersection graph is a graph in which the nodes are geometric shapes and there is an edge between two shapes if and only if they intersect. An independent set in a geometric intersection graph is just a set of disjoint (non-overlapping) shapes. The problem of finding maximum independent sets in geometric intersection graphs has been studied, for example, in the context of Automatic label placement: given a set of locations in a map, find a maximum set of disjoint rectangular labels near these locations.

Finding a maximum independent set in intersection graphs is still NP-complete, but it is easier to approximate than the general maximum independent set problem. A recent survey can be found in the introduction of Chan & Har-Peled (2012).

In d-claw-free graphs

edit

A d-claw in a graph is a set of d+1 vertices, one of which (the "center") is connected to the other d vertices, but the other d vertices are not connected to each other. A d-claw-free graph is a graph that does not have a d-claw subgraph. Consider the algorithm that starts with an empty set, and incrementally adds an arbitrary vertex to it as long as it is not adjacent to any existing vertex. In d-claw-free graphs, every added vertex invalidates at most d ? 1 vertices from the maximum independent set; therefore, this trivial algorithm attains a (d ? 1)-approximation algorithm for the maximum independent set. In fact, it is possible to get much better approximation ratios:

  • Neuwohner[20] presented a polynomial time algorithm that, for any constant ε>0, finds a (d/2 ? 1/63,700,992+ε)-approximation for the maximum weight independent set in a d-claw free graph.
  • Cygan[21] presented a quasi-polynomial time algorithm that, for any ε>0, attains a (d+ε)/3 approximation.

Finding maximal independent sets

edit

The problem of finding a maximal independent set can be solved in polynomial time by a trivial parallel greedy algorithm .[22] All maximal independent sets can be found in time O(3n/3) = O(1.4423n).

Counting independent sets

edit
Unsolved problem in computer science
Is there a fully polynomial-time approximation algorithm for the number of independent sets in bipartite graphs?

The counting problem #IS asks, given an undirected graph, how many independent sets it contains. This problem is intractable, namely, it is ?P-complete, already on graphs with maximal degree three.[23] It is further known that, assuming that NP is different from RP, the problem cannot be tractably approximated in the sense that it does not have a fully polynomial-time approximation scheme with randomization (FPRAS), even on graphs with maximal degree six;[24] however it does have an fully polynomial-time approximation scheme (FPTAS) in the case where the maximal degree is five.[25] The problem #BIS, of counting independent sets on bipartite graphs, is also ?P-complete, already on graphs with maximal degree three.[26] It is not known whether #BIS admits a FPRAS.[27]

The question of counting maximal independent sets has also been studied.

Applications

edit

The maximum independent set and its complement, the minimum vertex cover problem, is involved in proving the computational complexity of many theoretical problems.[28] They also serve as useful models for real world optimization problems, for example maximum independent set is a useful model for discovering stable genetic components for designing engineered genetic systems.[29]

See also

edit
  • An independent set of edges is a set of edges of which no two have a vertex in common. It is usually called a matching.
  • A vertex coloring is a partition of the vertex set into independent sets.

Notes

edit
  1. ^ Korshunov (1974)
  2. ^ Godsil & Royle (2001), p. 3.
  3. ^ Garey, M. R.; Johnson, D. S. (2025-08-07). ""Strong" NP-Completeness Results: Motivation, Examples, and Implications". Journal of the ACM. 25 (3): 499–508. doi:10.1145/322077.322090. ISSN?0004-5411. S2CID?18371269.
  4. ^ Proof: A set V of vertices is an independent set. if and only if every edge in the graph is adjacent to at most one member of V, if and only if every edge in the graph is adjacent to at least one member not in V, if and only if the complement of V is a vertex cover.
  5. ^ Moon & Moser (1965).
  6. ^ Füredi (1987).
  7. ^ Chiba & Nishizeki (1985).
  8. ^ Berman & Fujito (1995).
  9. ^ Xiao & Nagamochi (2017)
  10. ^ Xiao & Nagamochi (2013)
  11. ^ Minty (1980),Sbihi (1980),Nakamura & Tamura (2001),Faenza, Oriolo & Stauffer (2014),Nobili & Sassano (2015)
  12. ^ Lokshtanov, Vatshelle & Villanger (2014)
  13. ^ Gr?tschel, Lovász & Schrijver (1993, Chapter 9: Stable Sets in Graphs)
  14. ^ Frank (1976)
  15. ^ Tarjan (1985)
  16. ^ Bazgan, Cristina; Escoffier, Bruno; Paschos, Vangelis Th. (2005). "Completeness in standard and differential approximation classes: Poly-(D)APX- and (D)PTAS-completeness". Theoretical Computer Science. 339 (2–3): 272–292. doi:10.1016/j.tcs.2005.03.007. S2CID?1418848.
  17. ^ Baker (1994); Grohe (2003).
  18. ^ Halldórsson & Radhakrishnan (1997).
  19. ^ Chlebík, Miroslav; Chlebíková, Janka (2003). "Approximation Hardness for Small Occurrence Instances of NP-Hard Problems". Proceedings of the 5th International Conference on Algorithms and Complexity. Lecture Notes in Computer Science. Vol.?2653. pp.?152–164. doi:10.1007/3-540-44849-7_21. ISBN?978-3-540-40176-6.
  20. ^ Neuwohner, Meike (2025-08-07), An Improved Approximation Algorithm for the Maximum Weight Independent Set Problem in d-Claw Free Graphs, arXiv:2106.03545
  21. ^ Cygan, Marek (October 2013). "Improved Approximation for 3-Dimensional Matching via Bounded Pathwidth Local Search". 2013 IEEE 54th Annual Symposium on Foundations of Computer Science. pp.?509–518. arXiv:1304.1424. doi:10.1109/FOCS.2013.61. ISBN?978-0-7695-5135-7. S2CID?14160646.
  22. ^ Luby (1986).
  23. ^ Dyer, Martin; Greenhill, Catherine (2025-08-07). "On Markov Chains for Independent Sets". Journal of Algorithms. 35 (1): 17–49. doi:10.1006/jagm.1999.1071. ISSN?0196-6774.
  24. ^ Sly, Allan (2010). "Computational Transition at the Uniqueness Threshold". 2010 IEEE 51st Annual Symposium on Foundations of Computer Science. pp.?287–296. doi:10.1109/FOCS.2010.34. ISBN?978-1-4244-8525-3. S2CID?901126.
  25. ^ Bezáková, Ivona; Galanis, Andreas; Goldberg, Leslie Ann; Guo, Heng; ?tefankovi?, Daniel (2019). "Approximation via Correlation Decay When Strong Spatial Mixing Fails". SIAM Journal on Computing. 48 (2): 279–349. arXiv:1510.09193. doi:10.1137/16M1083906. ISSN?0097-5397. S2CID?131975798.
  26. ^ Xia, Mingji; Zhang, Peng; Zhao, Wenbo (2025-08-07). "Computational complexity of counting problems on 3-regular planar graphs". Theoretical Computer Science. Theory and Applications of Models of Computation. 384 (1): 111–125. doi:10.1016/j.tcs.2007.05.023. ISSN?0304-3975., quoted in Curticapean, Radu; Dell, Holger; Fomin, Fedor; Goldberg, Leslie Ann; Lapinskas, John (2025-08-07). "A Fixed-Parameter Perspective on #BIS". Algorithmica. 81 (10): 3844–3864. arXiv:1702.05543. doi:10.1007/s00453-019-00606-4. hdl:1983/ecb5c34c-d6be-44ec-97ea-080f57c5e6af. ISSN?1432-0541. S2CID?3626662.
  27. ^ Cannon, Sarah; Perkins, Will (2020). Chawla, Shuchi (ed.). Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms. Philadelphia, PA: Society for Industrial and Applied Mathematics. arXiv:1906.01666. doi:10.1137/1.9781611975994.88. ISBN?978-1-61197-599-4. S2CID?174799567.
  28. ^ Skiena, Steven S. (2012). The algorithm design manual. Springer. ISBN?978-1-84800-069-8. OCLC?820425142.
  29. ^ Hossain, Ayaan; Lopez, Eriberto; Halper, Sean M.; Cetnar, Daniel P.; Reis, Alexander C.; Strickland, Devin; Klavins, Eric; Salis, Howard M. (2025-08-07). "Automated design of thousands of nonrepetitive parts for engineering stable genetic systems". Nature Biotechnology. 38 (12): 1466–1475. doi:10.1038/s41587-020-0584-2. ISSN?1546-1696. PMID?32661437. S2CID?220506228.

References

edit
edit
LC什么意思 右眼跳是什么原因 强迫症什么意思 钾高了会出现什么症状 人力资源是什么意思
男人吃什么能延时 饭后打嗝是什么原因 抿嘴是什么意思 刘诗诗是什么样的人 痛风该吃什么药好得快
3月27号是什么星座 盆腔炎有什么症状 天津副市长什么级别 临床诊断是什么意思 室内用什么隔墙最便宜
甲亢是一种什么病严重吗 生死离别代表什么生肖 安欣是什么电视剧 75c是什么罩杯 掰手指头响有什么危害
脸上发痒是什么原因hcv9jop7ns5r.cn 纳呆什么意思hcv8jop7ns5r.cn m什么单位hcv9jop3ns6r.cn 晚上喝红酒有什么好处和坏处hcv8jop2ns5r.cn 什么辉煌四字词语bysq.com
木糖醇是什么xjhesheng.com 种植牙是什么意思hcv8jop0ns5r.cn drg什么意思hcv9jop3ns1r.cn 53岁属什么hcv8jop9ns1r.cn 为什么湿气重xjhesheng.com
何其是什么意思hcv9jop2ns6r.cn 猫藓用什么药hcv9jop5ns2r.cn 对对子是什么意思hcv8jop8ns6r.cn 11月14号是什么星座hcv9jop7ns3r.cn 纪梵希属于什么档次hcv8jop6ns9r.cn
海带属于什么类520myf.com 血管瘤是什么病严重吗hcv7jop5ns4r.cn 一切尽在不言中什么意思inbungee.com mr是什么检查项目hcv9jop8ns0r.cn 拾人牙慧的意思是什么hcv9jop5ns1r.cn
百度