蕴字五行属什么| 月经量少什么原因| 9月24号是什么星座| 审计署是什么级别| 烟酰胺有什么用| 为什么冬天会下雪| 肌酐高是什么原因造成的| 平诊是什么意思| 出生证编号是什么| 车顶放饮料是什么意思| 鸡屁股叫什么| 儿童经常流鼻血什么原因造成的| 女的肾虚是什么原因引起的| 送礼送什么| 经常口臭的人是什么原因引起的| 孩子说话晚是什么原因| acs是什么病| 右边偏头痛什么原因| 搪瓷是什么材料| 表姐的孩子叫我什么| 地龙是什么生肖| 健康管理是做什么的| 长期手淫有什么危害| 土笋冻是什么虫子| 变态什么意思| 一什么野菜| 什么是膳食纤维| 簋是什么| ca是什么元素| 荷叶茶有什么功效和作用| www是什么| 修成正果是什么意思| 自言自语什么意思| 财神是什么生肖| 命脉是什么意思| 一直吐是什么原因| romantic什么意思| 胡人是什么民族| 男人眉骨高代表什么| 怀孕乳房会有什么变化| 喝金银花有什么好处| 肩胛骨疼痛是什么原因| 吃什么长内膜最快最有效| 叶黄素对眼睛有什么好处| 轻断食是什么意思| 孕妇c反应蛋白高说明什么| 圣诞节什么时候| 天蝎女喜欢什么样的男生| 菜心是什么菜的心| 为什么吃荔枝会上火| 吃虾不能吃什么水果| 白兰地是属于什么酒| 纸包鸡什么意思| 古代质子是什么意思| 251是什么意思| 什么除草剂三年不长草| 沈阳有什么好玩的地方| 维生素b族适合什么人吃| 为什么要冬病夏治| 木行念什么| 这个季节吃什么水果最好| 咽炎吃什么药| 矢气是什么意思| 便秘什么原因引起的| 脚麻是什么原因引起的| 什么的火车| 晒背什么时候最佳时间| 免疫球蛋白低说明什么| 5月28号是什么日子| 葫芦的寓意是什么| 福荫是什么意思| 疱疹性咽峡炎吃什么食物| 猫吐是什么原因| 水潴留是什么意思| 肾阳虚有什么症状男性| 什么的眼光| 人生没有什么不可放下| 北极有什么动物| 阴囊湿疹挂什么科| 肾虚吃什么中成药| 肺结核吃什么药| 怀孕血压高对胎儿有什么影响| 霍金什么时候去世| 羡慕的什么| 2.13是什么星座| 雪花粉是什么面粉| 男性孕前检查挂什么科| 什么叫瑕疵| 月经期体重增加是什么原因| 爬山膝盖疼是什么原因| 司空见惯的惯是什么意思| 平安对什么| 解解乏是什么意思| 脑瘤是什么原因引起的| 儿童查微量元素挂什么科| 哈吉斯牌子是什么档次| 乙肝什么症状| 做梦梦见考试是什么意思| 长焦是什么意思| 免疫缺陷是什么意思| 肠胃炎需要做什么检查| 2a是什么意思| 似曾相识是什么意思| k1什么意思| pml是什么意思| 跑步机cal是什么意思| 孤独症有什么表现| 后中长是什么意思| 人类什么时候灭绝| 中药什么时候喝效果最好| 眼睛充血是什么原因造成的| 泰国是一个什么样的国家| 宝石蓝是什么颜色| 白条鱼是什么鱼| 二胎政策什么时候开放的| 牙齿为什么会变黑| 腹泻肚子疼吃什么药| 巴沙鱼为什么不能吃| o型血和什么血型容易溶血| 留低是什么意思| 洋辣子学名叫什么| 青瓜是什么| 血液生化检查能看出什么病| 脚上脱皮是什么原因| 派出所什么时候上班| ld是什么意思| 骨骼肌是什么意思| 七个月宝宝可以吃什么辅食| 梦见摘桃子是什么意思| 厘米为什么叫公分| 吃什么对脑血管好| 女性尿路感染是什么原因造成的| 孕妇感染弓形虫有什么症状| 喉咙痛上火吃什么药效果最好| 险象环生是什么意思| 阑尾炎输液输什么药| 腿发麻是什么原因| 痛风有什么症状| 甲醛中毒挂什么科| 中国第一长洞是什么| 落差是什么意思| 容易手麻脚麻是什么原因| 笔记本电脑什么品牌好| 舌头白吃什么药| 苏打水配什么好喝| 睡觉口干舌燥什么原因| 月经来了有血块是什么原因| 感冒可以吃什么水果好| 什么不得| 角的大小和什么有关| 大便红褐色是什么原因| 吃什么药头脑立刻清醒| 色散是什么意思| 农历10月19日是什么星座| 茶话会是什么意思| 笑点低的人说明什么| 忽什么忽什么| 总价包干是什么意思| 什么油好| 柠檬有什么功效| 老掉头发是什么原因| 信指什么生肖| 什么是像素| 什么降压药副作用小且效果最好| 脚为什么会发麻| 骨质疏松有什么症状表现| 人体最大的免疫器官是什么| 唱反调是什么意思| 乙肝大三阳是什么意思| 渴望是什么意思| 本命年为什么不能结婚| other是什么意思| 叼是什么意思| 马蜂窝能治什么病| 蟋蟀吃什么| 磁场是什么| 什么是朱砂痣| 毛重是什么| 湿疹擦什么药膏| 烧仙草粉是什么做的| 体检挂什么科室| 神经性梅毒有什么症状| 孕妇贫血吃什么补血最好| 天什么地| 通草长什么样图片| 智能电视什么品牌好| 小孩便秘有什么办法| 什么水果去火效果最好| 知青为什么要下乡| 黄龙玉产地在什么地方| 尾盘拉升意味着什么| 结核有什么症状| 助产士一般什么学历| 吃什么最健康| 脚上为什么会长鸡眼| 贾琏为什么叫二爷| 1218是什么星座| 为什么摩羯女颜值都高| 眼睛痒用什么滴眼液| 月字旁的字与什么有关| 吃驼奶粉有什么好处| 1959年是什么年| 贵人多忘事是什么意思| 拍手腕中间有什么好处| 棉花糖是什么做的| 东华帝君的真身是什么| 吃什么大便能特别通畅| 生日蛋糕上写什么字比较有创意| 规格是什么| 气血不足是什么意思| 自我价值是什么意思| 86年属什么| 中医科是看什么病的| 梦见自己掉河里了是什么意思| 供是什么意思| 梦见着火是什么意思| 锶是什么意思| 鼻腔有臭味是什么原因| 中药龙骨是什么| 脂溢性脱发吃什么药| 什么中药可以降糖| 猫不能吃什么东西| 氟西汀是什么药| 什么是骨质疏松| 肠胀气是什么原因引起的怎么解决| 每天拉肚子是什么原因引起的| 干咳喝什么止咳糖浆好| 牙齿疼吃什么药| foh是什么意思| 云为什么是白色的| 南京有什么玩的| 学美容要学些什么| 男人脚底有痣代表什么| 起风疹的原因是什么引起的| 人脉是什么意思| 煜怎么读音是什么意思| 头皮发痒用什么洗发水| 白芽奇兰是什么茶| 4月10号什么星座| 什么是比值| 什么发型好看| 黏膜是什么| 震颤是什么病| 武夷水仙茶属于什么茶| 绿豆和什么不能一起吃| 心源性哮喘首选什么药| 咳必清又叫什么| 唯有读书高的前一句是什么| 甲状腺看什么门诊| 这个梗是什么意思| 吃什么可以长头发| 老人双脚浮肿是什么原因| 拉肚子是什么原因引起的| 什么首什么尾| 去港澳旅游需要什么证件| 肺热咳嗽吃什么药| 氨曲南是什么药| 饴糖是什么糖| 威士忌是什么酿造的| 小狗感冒症状是什么样的| 醪糟是什么| 百鸟朝凤是什么生肖| 婴儿足底血筛查什么| 梦见很多蜘蛛是什么意思| 百度

一什么毛巾

(Redirected from Kernel (matrix))
百度 同时,通过报表结构优化,进一步减轻纳税人填报负担。

In mathematics, the kernel of a linear map, also known as the null space or nullspace, is the part of the domain which is mapped to the zero vector of the co-domain; the kernel is always a linear subspace of the domain.[1] That is, given a linear map L?: VW between two vector spaces V and W, the kernel of L is the vector space of all elements v of V such that L(v) = 0, where 0 denotes the zero vector in W,[2] or more symbolically:

An example for a kernel- the linear operator transforms all points on the line to the zero point , thus they form the kernel for the linear operator

Properties

edit
?
Kernel and image of a linear map L from V to W

The kernel of L is a linear subspace of the domain V.[3][2] In the linear map ? two elements of V have the same image in W if and only if their difference lies in the kernel of L, that is, ?

From this, it follows by the first isomorphism theorem that the image of L is isomorphic to the quotient of V by the kernel: ? In the case where V is finite-dimensional, this implies the rank–nullity theorem: ? where the term rank refers to the dimension of the image of L, ? while nullity refers to the dimension of the kernel of L, ?[4] That is, ? so that the rank–nullity theorem can be restated as ?

When V is an inner product space, the quotient ? can be identified with the orthogonal complement in V of ?. This is the generalization to linear operators of the row space, or coimage, of a matrix.

Generalization to modules

edit

The notion of kernel also makes sense for homomorphisms of modules, which are generalizations of vector spaces where the scalars are elements of a ring, rather than a field. The domain of the mapping is a module, with the kernel constituting a submodule. Here, the concepts of rank and nullity do not necessarily apply.

In functional analysis

edit

If V and W are topological vector spaces such that W is finite-dimensional, then a linear operator L: VW is continuous if and only if the kernel of L is a closed subspace of V.

Representation as matrix multiplication

edit

Consider a linear map represented as a m × n matrix A with coefficients in a field K (typically ? or ?), that is operating on column vectors x with n components over K. The kernel of this linear map is the set of solutions to the equation Ax = 0, where 0 is understood as the zero vector. The dimension of the kernel of A is called the nullity of A. In set-builder notation, ? The matrix equation is equivalent to a homogeneous system of linear equations: ? Thus the kernel of A is the same as the solution set to the above homogeneous equations.

Subspace properties

edit

The kernel of a m × n matrix A over a field K is a linear subspace of Kn. That is, the kernel of A, the set Null(A), has the following three properties:

  1. Null(A) always contains the zero vector, since A0 = 0.
  2. If x ∈ Null(A) and y ∈ Null(A), then x + y ∈ Null(A). This follows from the distributivity of matrix multiplication over addition.
  3. If x ∈ Null(A) and c is a scalar cK, then cx ∈ Null(A), since A(cx) = c(Ax) = c0 = 0.

The row space of a matrix

edit

The product Ax can be written in terms of the dot product of vectors as follows: ?

Here, a1, ... , am denote the rows of the matrix A. It follows that x is in the kernel of A, if and only if x is orthogonal (or perpendicular) to each of the row vectors of A (since orthogonality is defined as having a dot product of 0).

The row space, or coimage, of a matrix A is the span of the row vectors of A. By the above reasoning, the kernel of A is the orthogonal complement to the row space. That is, a vector x lies in the kernel of A, if and only if it is perpendicular to every vector in the row space of A.

The dimension of the row space of A is called the rank of A, and the dimension of the kernel of A is called the nullity of A. These quantities are related by the rank–nullity theorem[4] ?

Left null space

edit

The left null space, or cokernel, of a matrix A consists of all column vectors x such that xTA = 0T, where T denotes the transpose of a matrix. The left null space of A is the same as the kernel of AT. The left null space of A is the orthogonal complement to the column space of A, and is dual to the cokernel of the associated linear transformation. The kernel, the row space, the column space, and the left null space of A are the four fundamental subspaces associated with the matrix A.

Nonhomogeneous systems of linear equations

edit

The kernel also plays a role in the solution to a nonhomogeneous system of linear equations: ? If u and v are two possible solutions to the above equation, then ? Thus, the difference of any two solutions to the equation Ax = b lies in the kernel of A.

It follows that any solution to the equation Ax = b can be expressed as the sum of a fixed solution v and an arbitrary element of the kernel. That is, the solution set to the equation Ax = b is ? Geometrically, this says that the solution set to Ax = b is the translation of the kernel of A by the vector v. See also Fredholm alternative and flat (geometry).

Illustration

edit

The following is a simple illustration of the computation of the kernel of a matrix (see §?Computation by Gaussian elimination, below for methods better suited to more complex calculations). The illustration also touches on the row space and its relation to the kernel.

Consider the matrix ? The kernel of this matrix consists of all vectors (x, y, z) ∈ R3 for which ? which can be expressed as a homogeneous system of linear equations involving x, y, and z: ?

The same linear equations can also be written in matrix form as: ?

Through Gauss–Jordan elimination, the matrix can be reduced to: ?

Rewriting the matrix in equation form yields: ?

The elements of the kernel can be further expressed in parametric vector form, as follows: ?

Since c is a free variable ranging over all real numbers, this can be expressed equally well as: ? The kernel of A is precisely the solution set to these equations (in this case, a line through the origin in R3). Here, the vector (?1,?26,16)T constitutes a basis of the kernel of A. The nullity of A is therefore 1, as it is spanned by a single vector.

The following dot products are zero: ? which illustrates that vectors in the kernel of A are orthogonal to each of the row vectors of A.

These two (linearly independent) row vectors span the row space of A—a plane orthogonal to the vector (?1,?26,16)T.

With the rank 2 of A, the nullity 1 of A, and the dimension 3 of A, we have an illustration of the rank-nullity theorem.

Examples

edit
  • If L: RmRn, then the kernel of L is the solution set to a homogeneous system of linear equations. As in the above illustration, if L is the operator: ? then the kernel of L is the set of solutions to the equations ?
  • Let C[0,1] denote the vector space of all continuous real-valued functions on the interval [0,1], and define L: C[0,1] → R by the rule ? Then the kernel of L consists of all functions fC[0,1] for which f(0.3) = 0.
  • Let C(R) be the vector space of all infinitely differentiable functions RR, and let D: C(R) → C(R) be the differentiation operator: ? Then the kernel of D consists of all functions in C(R) whose derivatives are zero, i.e. the set of all constant functions.
  • Let R be the direct product of infinitely many copies of R, and let s: RR be the shift operator ? Then the kernel of s is the one-dimensional subspace consisting of all vectors (x1, 0, 0, 0, ...).
  • If V is an inner product space and W is a subspace, the kernel of the orthogonal projection VW is the orthogonal complement to W in V.

Computation by Gaussian elimination

edit

A basis of the kernel of a matrix may be computed by Gaussian elimination.

For this purpose, given an m × n matrix A, we construct first the row augmented matrix ? where I is the n × n identity matrix.

Computing its column echelon form by Gaussian elimination (or any other suitable method), we get a matrix ? A basis of the kernel of A consists in the non-zero columns of C such that the corresponding column of B is a zero column.

In fact, the computation may be stopped as soon as the upper matrix is in column echelon form: the remainder of the computation consists in changing the basis of the vector space generated by the columns whose upper part is zero.

For example, suppose that ? Then ?

Putting the upper part in column echelon form by column operations on the whole matrix gives ?

The last three columns of B are zero columns. Therefore, the three last vectors of C, ? are a basis of the kernel of A.

Proof that the method computes the kernel: Since column operations correspond to post-multiplication by invertible matrices, the fact that ? reduces to ? means that there exists an invertible matrix ? such that ? with ? in column echelon form. Thus ?, ?, and ?. A column vector ? belongs to the kernel of ? (that is ?) if and only if ? where ?. As ? is in column echelon form, ?, if and only if the nonzero entries of ? correspond to the zero columns of ?. By multiplying by ?, one may deduce that this is the case if and only if ? is a linear combination of the corresponding columns of ?.

Numerical computation

edit

The problem of computing the kernel on a computer depends on the nature of the coefficients.

Exact coefficients

edit

If the coefficients of the matrix are exactly given numbers, the column echelon form of the matrix may be computed with Bareiss algorithm more efficiently than with Gaussian elimination. It is even more efficient to use modular arithmetic and Chinese remainder theorem, which reduces the problem to several similar ones over finite fields (this avoids the overhead induced by the non-linearity of the computational complexity of integer multiplication).[citation needed]

For coefficients in a finite field, Gaussian elimination works well, but for the large matrices that occur in cryptography and Gr?bner basis computation, better algorithms are known, which have roughly the same computational complexity, but are faster and behave better with modern computer hardware.[citation needed]

Floating point computation

edit

For matrices whose entries are floating-point numbers, the problem of computing the kernel makes sense only for matrices such that the number of rows is equal to their rank: because of the rounding errors, a floating-point matrix has almost always a full rank, even when it is an approximation of a matrix of a much smaller rank. Even for a full-rank matrix, it is possible to compute its kernel only if it is well conditioned, i.e. it has a low condition number.[5][citation needed]

Even for a well conditioned full rank matrix, Gaussian elimination does not behave correctly: it introduces rounding errors that are too large for getting a significant result. As the computation of the kernel of a matrix is a special instance of solving a homogeneous system of linear equations, the kernel may be computed with any of the various algorithms designed to solve homogeneous systems. A state of the art software for this purpose is the Lapack library.[citation needed]

See also

edit

Notes and references

edit
  1. ^ Weisstein, Eric W. "Kernel". mathworld.wolfram.com. Retrieved 2025-08-07.
  2. ^ a b "Kernel (Nullspace) | Brilliant Math & Science Wiki". brilliant.org. Retrieved 2025-08-07.
  3. ^ Linear algebra, as discussed in this article, is a very well established mathematical discipline for which there are many sources. Almost all of the material in this article can be found in Lay 2005, Meyer 2001, and Strang's lectures.
  4. ^ a b Weisstein, Eric W. "Rank-Nullity Theorem". mathworld.wolfram.com. Retrieved 2025-08-07.
  5. ^ "Archived copy" (PDF). Archived from the original (PDF) on 2025-08-07. Retrieved 2025-08-07.{{cite web}}: CS1 maint: archived copy as title (link)

Bibliography

edit
edit
日单是什么意思 黄瓜炒什么好吃 今年17岁属什么 低血压头晕吃什么药 上环什么时候去最合适
什么原因导致卵巢早衰 弟弟是什么意思 孤寡老人是什么意思 澳大利亚属于什么洲 长征是什么意思
孟子叫什么名字 粘纤是什么面料优缺点 什么叫高血脂 今年为什么这么热 二姨子是什么意思
阑尾炎疼吃什么药 墨迹什么意思 女累读什么 嘴巴下面长痘痘是什么原因引起的 p.a.是什么意思
红眼病用什么眼药水hcv8jop7ns5r.cn 诸葛亮为什么气死周瑜hcv8jop0ns0r.cn 下身有点刺痛什么原因hcv8jop6ns0r.cn 溥仪为什么没有后代imcecn.com 吃什么吐什么喝水都吐怎么办hcv8jop0ns8r.cn
梅艳芳什么病hcv8jop2ns8r.cn 肌肉萎缩看什么科hcv8jop0ns8r.cn 知我者莫若你什么意思hcv8jop2ns7r.cn 十月十一日是什么星座xinjiangjialails.com 什么大米好吃hcv7jop5ns3r.cn
礼金是什么意思hcv8jop1ns2r.cn 什么拉车连蹦带跳hcv9jop4ns9r.cn 大姨妈来了可以吃什么水果hcv9jop1ns7r.cn 高压150低压100吃什么药hcv7jop5ns5r.cn 大水牛是什么意思hcv8jop9ns6r.cn
为什么会湿气重hcv7jop6ns1r.cn 10月27日什么星座hcv9jop5ns0r.cn 镶牙与种牙有什么区别hcv7jop7ns1r.cn 雌堕什么意思hcv9jop7ns2r.cn 陈凯歌为什么不娶倪萍hcv9jop2ns6r.cn
百度