六畜兴旺是什么意思| 肌层回声欠均匀是什么意思| 熊猫属于什么科动物| 苹果什么时间吃最好| 乙肝第二针最晚什么时候打| mt是什么缩写| 肌电图主要检查什么病| 眼睛浮肿是什么原因引起的| 低血糖平时要注意什么| hr是什么| 尿带血什么原因| 女人依赖男人说明什么| 高血压和高血脂有什么区别| 火为什么没有影子| 外婆的妈妈叫什么| 犯病是什么意思| 吃什么水果补肾| 心管是什么部位| 女生适合抽什么烟| 耳朵疼什么原因| 头发为什么会掉| 8月30号什么星座| 经血是什么血| 白头发越来越多是什么原因| 银杯子喝水有什么好处| 李维斯属于什么档次| dht是什么| 三伏天什么时候最热| 胃体息肉是什么意思| 火镰是什么意思| 低压高是什么原因引起的| 抬旗是什么意思| 立春之后是什么节气| 风热感冒吃什么药效果好| 麦芒是什么意思| 牛肉炖什么菜好吃| 过敏性紫癜是什么症状| 疱疹在什么情况下传染| spyder是什么品牌| 来大姨妈量少是什么原因| 五谷中的菽是指什么| 木字旁有什么字| 什么是紫外线| 梭形是什么形状| 类风湿性关节炎用什么药| 熥是什么意思| 津字五行属什么| 懦弱什么意思| 雷达是什么| 超拔是什么意思| w3是什么意思| 许莫氏结节是什么意思| 1948年中国发生了什么| 木耳菜是什么菜| 全身酸痛失眠什么原因| 66年属马是什么命| 脚浮肿是什么原因| 胃胀是什么症状| 全麦粉和小麦粉的区别是什么| 就诊卡号是什么| 大便有凹槽是什么原因| 零度是什么意思| 蓝莓不能和什么一起吃| 曹操的父亲叫什么名字| 寸头是什么意思| 孕妇贫血对胎儿有什么影响| 1月30号是什么星座| 血型b型rh阳性是什么意思| 烂嘴唇是什么原因引起的| 喝酒伤什么器官| 蚊子怕什么味道| 阙什么意思| 导购员是做什么的| 百合和拉拉有什么区别| 百合是什么| 肾炎可以吃什么水果| 69式是什么意思| 西南方向是什么方位| 什么多么什么造句| 下寒上热体质吃什么中成药| 荨麻疹吃什么药管用| 你有毒是什么意思| 左氧氟沙星的功效是什么| 空调睡眠模式什么意思| 月经期间可以吃什么水果| 火腿是什么肉| 玉是什么结构的字| 内分泌失调吃什么| 白酒配什么饮料好喝| 老人吃什么钙片补钙效果最好| 10月29号是什么星座| 腰果是什么树的果实| 交泰殿是干什么的| 牛黄安宫丸治什么病| 普工是什么| 头皮发痒是什么原因引起的| 浅表性胃炎吃什么中成药最好| c1开什么车| 司长是什么级别的官| 车前草治什么病最好| 军用水壶为什么是铝的| 容易紧张是什么原因| 漏尿是什么原因引起的| 脚趾麻木是什么病先兆| 穆字五行属什么| 风寒感冒吃什么消炎药| 孕妇不能吃什么东西| 颈静脉怒张见于什么病| 国五行属什么| 做梦孩子死了什么预兆| 肛门痛什么原因| 胃疼喝什么药| 甲状腺亢进是什么意思| 吃什么解腻| 三尖瓣少量反流是什么意思| 什么是碳水化合物食物| 小儿抽搐是什么原因引起的| 离婚需要什么资料| 道心是什么意思| 忌是什么意思| 吲达帕胺片是什么药| 4月份是什么星座| 缄默症是什么病| 丝瓜和什么相克| 辣木籽是什么| 肾结石吃什么药| 嚼舌根是什么意思| 治疗hpv病毒用什么药| 开五行属什么| 大红袍茶属于什么茶| 灵枢是什么意思| 拔完智齿可以吃什么| 橄榄菜是什么菜| 正处级是什么级别| 梦见死去的朋友是什么意思| 为什么要打破伤风| 所谓是什么意思| 2022年属什么生肖| 马头岩肉桂是什么茶| 你正在干什么用英语怎么说| 氯吡格雷是什么药| 什么果酒最好喝| pdw偏低是什么意思| 晚上尿多是什么病| 脱肛和痔疮有什么区别| mi是什么| 吃洋葱有什么好处| 壁虎进家里预示什么| 左边太阳穴疼是什么原因| 数学专业学什么| 1936年中国发生了什么| 结膜炎吃什么药| 花斑癣用什么药膏好| 男士私处瘙痒用什么药| 淋巴结转移是什么意思| 相知是什么意思| 骄阳是什么意思| 什么是佝偻病有什么症状| 怀孕梦见蛇是什么意思| 嘴唇发紫发黑是什么原因| 气血虚吃什么| 肺结核的痰是什么颜色| 什么叫御姐| 零和游戏是什么意思| 姨妈期间不能吃什么| 4.8什么星座| 慢性萎缩性胃炎c2是什么意思| 血竭是什么东西| 大生化能查出什么病来| 金为什么克木| 滑膜炎用什么药治疗最好最快| 幡是什么意思| 小儿流鼻涕吃什么药好| 一般事故隐患是指什么| 小名是什么意思| 长生殿讲的是什么故事| 尿酸高吃什么药效果好| 双眸是什么意思| 天麻种植需要什么条件| 柠檬片泡水喝有什么功效和作用| 新生儿甲状腺偏高有什么影响| 女生喝红牛有什么影响| 怀孕什么时候可以同房| 气血不足吃什么好| drg是什么意思| 热结旁流是什么意思| 陈皮起什么作用| 嗜睡是什么原因| 中文是什么意思| se是什么| 尿液阳性是什么意思| 男人小腿肿是什么原因| 什么样的肚子疼是癌| 锑是什么| 吃什么东西能减肥| 厚实是什么意思| 胎记看什么科| 怀孕两个月有什么症状| 摸头杀是什么意思| 围魏救赵是什么意思| 早上起来口干口苦口臭是什么原因| 河南话信球是什么意思| 什么样的小鸟| 夜游神是什么意思| 梦见白发是什么意思| 肌酐高是什么问题| 黄腔是什么意思| 纯钛对人体有什么好处| 火车动车高铁有什么区别| 做梦烧纸钱什么意思| 黄瓜不能和什么食物一起吃| 北方五行属什么| 什么样的人做什么样的事| 央行行长什么级别| 怀孕吃什么会流产| 桂花树施什么肥| 11是什么生肖| 减肥期间可以吃什么零食| 孕期长痘痘是什么原因| 豹子号是什么意思| 鼻窦炎长什么样图片| 早上尿黄是什么原因| 肺结核是什么引起的| 慢性肠炎吃什么药| 府绸是什么面料| 吃红糖有什么好处和坏处| 宫内膜回声欠均匀是什么意思| 弓形虫是什么| 一个口一个坐念什么| 四川有什么特产| 什么什么不已| 不现实什么意思| 减肥吃什么米| hot什么意思| 周瑜属什么生肖| 介入室是干什么的| 隐翅虫是什么样子| 打酱油是什么意思| 耳朵痒用什么药最有效| 灵芝有什么作用| 肝虚吃什么中成药| 鉴黄师是什么职业| 衣锦还乡是什么意思| 去肝火喝什么茶| 断交社保有什么影响| 头发热是什么原因| 柯基犬为什么要断尾巴| 拉肚子最好吃什么食物| 通马桶的工具叫什么| 骨量是什么意思| 周期性是什么意思| 为什么会斑秃| 妊娠状态是什么意思| 支原体感染咳嗽吃什么药| 全职太太是什么意思| 过敏性紫癜什么症状| 菜鸟是什么意思| 七一年属什么生肖| 属蛇男和什么属相最配| 什么花是白色的| 骨密度是检查什么的| kda是什么意思| 钾高吃什么可以降下来| 什么什么的沙滩| 百度

斯坦福大学公开课:扎克伯格谈Facebook创业过程

(Redirected from Horizontal scaling)
百度 比如玩了阴阳师,可能就会对日本平安时代有所了解。

Scalability is the property of a system to handle a growing amount of work. One definition for software systems specifies that this may be done by adding resources to the system.[1]

In an economic context, a scalable business model implies that a company can increase sales given increased resources. For example, a package delivery system is scalable because more packages can be delivered by adding more delivery vehicles. However, if all packages had to first pass through a single warehouse for sorting, the system would not be as scalable, because one warehouse can handle only a limited number of packages.[2]

In computing, scalability is a characteristic of computers, networks, algorithms, networking protocols, programs and applications. An example is a search engine, which must support increasing numbers of users, and the number of topics it indexes.[3] Webscale is a computer architectural approach that brings the capabilities of large-scale cloud computing companies into enterprise data centers.[4]

In distributed systems, there are several definitions according to the authors, some considering the concepts of scalability a sub-part of elasticity, others as being distinct. According to Marc Brooker: "a system is scalable in the range where marginal cost of additional workload is nearly constant." Serverless technologies fit this definition but you need to consider total cost of ownership not just the infra cost. [5]

In mathematics, scalability mostly refers to closure under scalar multiplication.

In industrial engineering and manufacturing, scalability refers to the capacity of a process, system, or organization to handle a growing workload, adapt to increasing demands, and maintain operational efficiency. A scalable system can effectively manage increased production volumes, new product lines, or expanding markets without compromising quality or performance. In this context, scalability is a vital consideration for businesses aiming to meet customer expectations, remain competitive, and achieve sustainable growth. Factors influencing scalability include the flexibility of the production process, the adaptability of the workforce, and the integration of advanced technologies. By implementing scalable solutions, companies can optimize resource utilization, reduce costs, and streamline their operations. Scalability in industrial engineering and manufacturing enables businesses to respond to fluctuating market conditions, capitalize on emerging opportunities, and thrive in an ever-evolving global landscape.[citation needed]

Examples

edit

The Incident Command System (ICS) is used by emergency response agencies in the United States. ICS can scale resource coordination from a single-engine roadside brushfire to an interstate wildfire. The first resource on scene establishes command, with authority to order resources and delegate responsibility (managing five to seven officers, who will again delegate to up to seven, and on as the incident grows). As an incident expands, more senior officers assume command.[6]

Dimensions

edit

Scalability can be measured over multiple dimensions, such as:[7]

  • Administrative scalability: The ability for an increasing number of organizations or users to access a system.
  • Functional scalability: The ability to enhance the system by adding new functionality without disrupting existing activities.
  • Geographic scalability: The ability to maintain effectiveness during expansion from a local area to a larger region.
  • Load scalability: The ability for a distributed system to expand and contract to accommodate heavier or lighter loads, including, the ease with which a system or component can be modified, added, or removed, to accommodate changing loads.
  • Generation scalability: The ability of a system to scale by adopting new generations of components.
  • Heterogeneous scalability is the ability to adopt components from different vendors.

Domains

edit
  • A routing protocol is considered scalable with respect to network size, if the size of the necessary routing table on each node grows as O(log N), where N is the number of nodes in the network. Some early peer-to-peer (P2P) implementations of Gnutella had scaling issues. Each node query flooded its requests to all nodes. The demand on each peer increased in proportion to the total number of peers, quickly overrunning their capacity. Other P2P systems like BitTorrent scale well because the demand on each peer is independent of the number of peers. Nothing is centralized, so the system can expand indefinitely without any resources other than the peers themselves.
  • A scalable online transaction processing system or database management system is one that can be upgraded to process more transactions by adding new processors, devices and storage, and which can be upgraded easily and transparently without shutting it down.
  • The distributed nature of the Domain Name System (DNS) allows it to work efficiently, serving billions of hosts on the worldwide Internet.

Horizontal (scale out) and vertical scaling (scale up)

edit
 
Horizontal scaling adds new nodes to a computing cluster, while vertical scaling adds resources to existing nodes.

Resources fall into two broad categories: horizontal and vertical.[8]

Horizontal or scale out

edit

Scaling horizontally (out/in) means adding or removing nodes, such as adding a new computer to a distributed software application. An example might involve scaling out from one web server to three. High-performance computing applications, such as seismic analysis and biotechnology, scale workloads horizontally to support tasks that once would have required expensive supercomputers. Other workloads, such as large social networks, exceed the capacity of the largest supercomputer and can only be handled by scalable systems. Exploiting this scalability requires software for efficient resource management and maintenance.[7]

Vertical or scale up

edit

Scaling vertically (up/down) means adding resources to (or removing resources from) a single node, typically involving the addition of CPUs, memory or storage to a single computer.[7]

Benefits to scale-up include avoiding increased management complexity, more sophisticated programming to allocate tasks among resources and handling issues such as throughput, latency, and synchronization across nodes. Moreover some applications do not scale horizontally.

Network scalability

edit

Network function virtualization defines these terms differently: scaling out/in is the ability to scale by adding/removing resource instances (e.g., virtual machine), whereas scaling up/down is the ability to scale by changing allocated resources (e.g., memory/CPU/storage capacity).[9]

Database scalability

edit

Scalability for databases requires that the database system be able to perform additional work given greater hardware resources, such as additional servers, processors, memory and storage. Workloads have continued to grow and demands on databases have followed suit.

Algorithmic innovations include row-level locking and table and index partitioning. Architectural innovations include shared-nothing and shared-everything architectures for managing multi-server configurations.

Strong versus eventual consistency (storage)

edit

In the context of scale-out data storage, scalability is defined as the maximum storage cluster size which guarantees full data consistency, meaning there is only ever one valid version of stored data in the whole cluster, independently from the number of redundant physical data copies. Clusters which provide "lazy" redundancy by updating copies in an asynchronous fashion are called 'eventually consistent'. This type of scale-out design is suitable when availability and responsiveness are rated higher than consistency, which is true for many web file-hosting services or web caches (if you want the latest version, wait some seconds for it to propagate). For all classical transaction-oriented applications, this design should be avoided.[10]

Many open-source and even commercial scale-out storage clusters, especially those built on top of standard PC hardware and networks, provide eventual consistency only, such as some NoSQL databases like CouchDB and others mentioned above. Write operations invalidate other copies, but often don't wait for their acknowledgements. Read operations typically don't check every redundant copy prior to answering, potentially missing the preceding write operation. The large amount of metadata signal traffic would require specialized hardware and short distances to be handled with acceptable performance (i.e., act like a non-clustered storage device or database).[citation needed]

Whenever strong data consistency is expected, look for these indicators:[citation needed]

  • the use of InfiniBand, Fibrechannel or similar low-latency networks to avoid performance degradation with increasing cluster size and number of redundant copies.
  • short cable lengths and limited physical extent, avoiding signal runtime performance degradation.
  • majority / quorum mechanisms to guarantee data consistency whenever parts of the cluster become inaccessible.

Indicators for eventually consistent designs (not suitable for transactional applications!) are:[citation needed]

  • write performance increases linearly with the number of connected devices in the cluster.
  • while the storage cluster is partitioned, all parts remain responsive. There is a risk of conflicting updates.

Performance tuning versus hardware scalability

edit

It is often advised to focus system design on hardware scalability rather than on capacity. It is typically cheaper to add a new node to a system in order to achieve improved performance than to partake in performance tuning to improve the capacity that each node can handle. But this approach can have diminishing returns (as discussed in performance engineering). For example: suppose 70% of a program can be sped up if parallelized and run on multiple CPUs instead of one. If   is the fraction of a calculation that is sequential, and   is the fraction that can be parallelized, the maximum speedup that can be achieved by using P processors is given according to Amdahl's Law:

 

Substituting the value for this example, using 4 processors gives

 

Doubling the computing power to 8 processors gives

 

Doubling the processing power has only sped up the process by roughly one-fifth. If the whole problem was parallelizable, the speed would also double. Therefore, throwing in more hardware is not necessarily the optimal approach.

Universal Scalability Law

edit

In distributed systems, you can use Universal Scalability Law (USL) to model and to optimize scalability of your system. USL is coined by Neil J. Gunther and quantifies scalability based on parameters such as contention and coherency. Contention refers to delay due to waiting or queueing for shared resources. Coherence refers to delay for data to become consistent. For example, having a high contention indicates sequential processing that could be parallelized, while having a high coherency suggests excessive dependencies among processes, prompting you to minimize interactions. Also, with help of USL, you can, in advance, calculate the maximum effective capacity of your system: scaling up your system beyond that point is a waste. [11]

Weak versus strong scaling

edit

High performance computing has two common notions of scalability:

  • Strong scaling is defined as how the solution time varies with the number of processors for a fixed total problem size.
  • Weak scaling is defined as how the solution time varies with the number of processors for a fixed problem size per processor.[12]

See also

edit

References

edit
  1. ^ Bondi, André B. (2000). Characteristics of scalability and their impact on performance. Proceedings of the second international workshop on Software and performance – WOSP '00. p. 195. doi:10.1145/350391.350432. ISBN 158113195X.
  2. ^ Hill, Mark D. (1990). "What is scalability?" (PDF). ACM SIGARCH Computer Architecture News. 18 (4): 18. doi:10.1145/121973.121975. S2CID 1232925. and
    Duboc, Leticia; Rosenblum, David S.; Wicks, Tony (2006). A framework for modelling and analysis of software systems scalability (PDF). Proceedings of the 28th international conference on Software engineering – ICSE '06. p. 949. doi:10.1145/1134285.1134460. ISBN 1595933751.
  3. ^ Laudon, Kenneth Craig; Traver, Carol Guercio (2008). E-commerce: Business, Technology, Society. Pearson Prentice Hall/Pearson Education. ISBN 9780136006459.
  4. ^ "Why web-scale is the future". Network World. 2025-08-07. Retrieved 2025-08-07.
  5. ^ Building Serverless Applications on Knative. O'Reilly Media. ISBN 9781098142049.
  6. ^ Bigley, Gregory A.; Roberts, Karlene H. (2025-08-07). "The Incident Command System: High-Reliability Organizing for Complex and Volatile Task Environments". Academy of Management Journal. 44 (6): 1281–1299. doi:10.5465/3069401 (inactive 12 July 2025). ISSN 0001-4273.{{cite journal}}: CS1 maint: DOI inactive as of July 2025 (link)
  7. ^ a b c Hesham El-Rewini and Mostafa Abd-El-Barr (April 2005). Advanced Computer Architecture and Parallel Processing. John Wiley & Sons. p. 66. ISBN 978-0-471-47839-3.
  8. ^ Michael, Maged; Moreira, Jose E.; Shiloach, Doron; Wisniewski, Robert W. (March 26, 2007). Scale-up x Scale-out: A Case Study using Nutch/Lucene. 2007 IEEE International Parallel and Distributed Processing Symposium. p. 1. doi:10.1109/IPDPS.2007.370631. ISBN 978-1-4244-0909-9.
  9. ^ "Network Functions Virtualisation (NFV); Terminology for Main Concepts in NFV". Archived from the original (PDF) on 2025-08-07. Retrieved 2025-08-07.
  10. ^ Sadek Drobi (January 11, 2008). "Eventual consistency by Werner Vogels". InfoQ. Retrieved April 8, 2017.
  11. ^ Gunther, Neil (2007). Guerrilla Capacity Planning: A Tactical Approach to Planning for Highly Scalable Applications and Services. ISBN 978-3540261384.
  12. ^ "The Weak Scaling of DL_POLY 3". STFC Computational Science and Engineering Department. Archived from the original on March 7, 2014. Retrieved March 8, 2014.
edit
图片px是什么意思 奶奶的妈妈应该叫什么 啊囊死给什么意思 瞳字五行属什么 梦见自己爷爷死了是什么预兆
湫是什么意思 c是什么单位 芦笋不能和什么一起吃 制动是什么 舌苔发白厚吃什么药
紫色加绿色是什么颜色 弱精症有什么症状表现 吃避孕药为什么要吃维生素c 东倒西歪的动物是什么生肖 赴汤蹈火什么意思
大洋马是什么意思 右侧卵巢内囊性回声是什么意思 天妒英才是什么意思 胃肠炎吃什么药好 刻章需要什么材料
扁食是什么hcv8jop3ns1r.cn 针灸要注意什么aiwuzhiyu.com 缺钾最明显的症状是什么hcv9jop1ns2r.cn 患难见真情的上一句是什么hcv7jop5ns1r.cn 膝盖痛吃什么药hcv8jop1ns9r.cn
兔子吃什么蔬菜clwhiglsz.com 杀虫剂中毒有什么症状xinjiangjialails.com 方寸之地什么意思travellingsim.com 迎春花像什么hcv7jop5ns4r.cn 雾是什么hcv8jop8ns0r.cn
支气管炎不能吃什么hcv9jop7ns3r.cn 吃什么清肺效果最好hcv9jop4ns0r.cn 大圣归来2什么时候上映hcv8jop8ns3r.cn 国花是什么花hcv9jop5ns1r.cn 花心大萝卜是什么意思hcv9jop7ns5r.cn
红薯不能和什么一起吃hcv9jop5ns2r.cn 中性粒细胞百分比低是什么原因hcv8jop4ns9r.cn 县级以上医院是指什么hcv8jop8ns9r.cn 贫血吃什么食物好hcv9jop1ns8r.cn 胳膊上种花是什么疫苗onlinewuye.com
百度