撕漫男什么意思| 白天为什么能看到月亮| 拔智齿后吃什么| 预防心肌梗塞吃什么药最好| 什么什么大笑| 俄罗斯特工组织叫什么| 檀木手串有什么好处| 胃溃疡a1期是什么意思| 甲亢的症状是什么| 嘴唇舌头发麻什么病兆| 孔子的原名叫什么| 食用植物油是什么油| 拉尿有泡泡是什么原因| 子宫前位和子宫后位有什么区别| 出尔反尔是什么意思| 七四年属什么生肖| 血小板异常是什么原因| 喉咙痒咳嗽有痰是什么原因| 120是什么电话| 巴旦木和杏仁有什么区别| 硌得慌是什么意思| 无名指为什么叫无名指| 梅花鹿吃什么| 血压高什么症状| 门槛费是什么意思| 水泻拉肚子吃什么药| 鹿的部首是什么| 胃肠炎吃什么药好| 大腿根部痛是什么原因| 心衰的症状是什么| island什么意思| 单绒双羊是什么意思| 香蕉有什么作用与功效| 刘封为什么不救关羽| 脑梗塞吃什么药| 为什么会流鼻血什么原因引起的| 血块多是什么原因| 温州有什么区| 心梗是什么意思| 备孕检查挂什么科| 疝气看病挂什么科| 电波是什么意思| 扁桃体发炎吃什么药| 忻字五行属什么| 土豆发芽到什么程度不能吃| 为什么不能下午看病人| 下面痛是什么原因| 日照香炉生紫烟是什么意思| 抵税是什么意思| 苹果a1660是什么型号| 次胖是什么意思| 牛黄清心丸适合什么人群吃| 最好的避孕方法是什么| 睡觉掉床下是什么预兆| 川芎的功效与作用是什么| 吃什么能瘦| sakura是什么牌子| 总胆红素高是怎么回事有什么危害| 万象更新什么意思| 瘴气是什么| 梦见和死人说话是什么意思| 吹胡子瞪眼是什么意思| 扶正固本是什么意思| 身上冷是什么原因| 三十年婚姻是什么婚| 哈工大全称是什么| 花是植物的什么器官| 纪梵希为什么不娶赫本| 口咸是什么原因引起的| 嗓子总有痰吃什么药| 喝酒手发抖是什么原因| iu什么意思| flair呈高信号是什么意思| 头皮痒用什么药最有效| 梦见做春梦是什么意思| 乘务长是干什么的| 说梦话是什么原因引起的| 金鱼吊兰什么时候开花| 肛门周围痒是什么原因| 白色的鱼是什么鱼| 怀孕需要注意什么| 孕妇用什么驱蚊最安全| 茯苓和茯神有什么区别| 痛心疾首的疾什么意思| 阴茎出血是什么原因| 支付宝提现是什么意思| 种猪是什么意思| 卯木代表什么| 身体游走性疼痛什么病| 生日派对是什么意思| 芙蕖是什么意思| 74年出生属什么生肖| 马来玉是什么玉| 结晶高是什么原因| 柿子不能和什么一起吃| bbox是什么意思| 下巴起痘痘是什么原因| 一个山一个见读什么| 细菌是什么生殖| 心火旺吃什么药效果最好| 一什么屏风| 一什么教室| 艾滋病挂什么科| 沙漠有什么动物| 朋友圈ps是什么意思| 胎儿为什么会喜欢臀位| 过敏性鼻炎吃什么水果好| 锁骨属于什么骨| 晒太阳有什么好处| 安分守己什么意思| 什么成什么就| 胃手术后吃什么好| 2026年属什么生肖| 楷字五行属什么| 五塔标行军散有什么功效| 什么样的普洱茶才是好茶| 宝宝细菌感染吃什么药| ct是什么单位| 为什么一个月来两次姨妈| 正常白带是什么颜色| 武汉都有什么大学| 一月2日是什么星座| 害羞的近义词是什么| 老是头疼是什么原因| 秋天吃什么| 杨家将是什么生肖| 鸡飞狗跳是指什么生肖| 喜新厌旧是什么生肖| 儿童便秘吃什么最管用| 眼睛模糊用什么药好| 喝茶心慌的人什么体质| 查验是什么意思| 1991年属羊是什么命| 6.28什么星座| 二人世界是什么意思| 干眼症什么症状| 蟋蟀是靠什么发声的| 梦见白蛇是什么预兆| 鸡枞菌生长在什么地方| 恋恋不舍的意思是什么| 吹气检查胃是检查什么| 膨鱼鳃用什么搭配煲汤| rapido是什么牌子| 手脚麻木吃什么药| 9月28号是什么星座| 捻子泡酒有什么功效| 抗体高是什么意思| 手抖是因为什么| 小孩白细胞高是什么原因| 慈字五行属什么| 正常人吃叶酸有什么好处| 热辐射是什么| 什么是走婚| 什么月披星| 什么叫根管治疗| 三十三天都是什么天| 做小吃什么生意最赚钱| 养老保险什么时候开始交| 吃什么有助于排便| 梦见别人买房子是什么预兆| 检查阑尾炎挂什么科| rh阴性血是什么血型| 检查hpv需要注意什么提前注意什么| 眼睛屈光不正是什么| 巨细胞病毒阳性什么意思| 宝宝咬人是什么原因| 直肠炎吃什么药好的快| 降肌酐吃什么药| 什么是负离子| 发什么大成语| 丙申五行属什么| sm什么意思| 嘴唇边缘发黑是什么原因| 95年五行属什么| 栗棕色是什么颜色| 德比什么意思| 葡萄像什么| 刘备和刘邦什么关系| 举贤不避亲什么意思| 梦见自己买衣服是什么意思| 孙耀威为什么被雪藏| 胃胀吃点什么药| 被蚂蚁咬了怎么止痒消肿要擦什么药| 自由基是什么东西| 抽象思维是什么意思| 两个人在一起的意义是什么| 艾灸灸出水泡是什么情况| 口臭药店买什么药吃| 胆管堵塞有什么症状| 艮什么意思| 安徽有什么特色美食| 腋臭是什么原因引起的| 口腔溃疡缺什么维生素| 见路不走是什么意思| 黄色配什么颜色最好看| 口臭口干口苦是什么原因| 抑郁症吃什么食物好| lm是什么意思| 女人吃什么排湿气最快| 手指缝里长水泡还痒是什么原因| 82属什么生肖| 炉甘石是什么| 硝酸咪康唑乳膏和酮康唑乳膏有什么区别| 胆汁反流是什么症状| 诺如病毒吃什么药好得快一点| 腰间盘膨出吃什么药效果好| 酒糟是什么| 裂纹舌是什么原因引起的| 什么水果补血| 707是什么意思| 子宫内膜厚有什么影响| 扁桃体肥大有什么影响| 结婚送什么| parzin眼镜是什么牌子| 皮肤过敏挂什么科| 有且仅有什么意思| 美业是做什么的| 为什么说成也萧何败也萧何| 靶向药是什么意思| 轻微手足口病吃什么药| 荨麻疹打什么针好得快| 城镇户口是什么意思| 牙齿松动吃什么药最好| 舌头上长泡是什么原因| 朱砂是什么| 包的部首是什么| 笙是什么意思| 为什么额头反复长痘痘| 继发性高血压是什么意思| 什么人容易得尿毒症| 梦见女鬼是什么意思| 什么是道德绑架| 梦到丧事场面什么意思| 汗毛重是什么原因| 种牙是什么意思| 10.21是什么星座| crp是什么| 儿童尿路感染吃什么药| 梦见吃水饺是什么预兆| 梦到别人给钱是什么意思| 自缢是什么意思| 1956年属什么| 乳化是什么意思| 为什么腋下有异味| 什么的形象| 小代表什么生肖| 支气管扩张吃什么药| 东方美人茶属于什么茶| 老年人总睡觉是什么原因| 无机磷测定是检查什么| 什么食物属于发物| 器材是什么意思| 撕脱性骨折是什么意思| 精神病人最怕什么刺激| 吃什么补脾虚| 白带长什么样| 去医院看脚挂什么科| 开飞机什么意思| 翻盘是什么意思| 白细胞高是什么原因造成的| 细菌性阴道病用什么药| 药流有什么危害| #NAME?| 际遇是什么意思| 百度

萨德事件是什么意思

(Redirected from Absolute consistency)
百度 黄强表示,这是对方为了转移舆论焦点作出的恶意抹黑,不过现在狗已经安全找回,没有必要再去向他追究了。

In deductive logic, a consistent theory is one that does not lead to a logical contradiction.[1] A theory is consistent if there is no formula such that both and its negation are elements of the set of consequences of . Let be a set of closed sentences (informally "axioms") and the set of closed sentences provable from under some (specified, possibly implicitly) formal deductive system. The set of axioms is consistent when there is no formula such that and . A trivial theory (i.e., one which proves every sentence in the language of the theory) is clearly inconsistent. Conversely, in an explosive formal system (e.g., classical or intuitionistic propositional or first-order logics) every inconsistent theory is trivial.[2]:?7? Consistency of a theory is a syntactic notion, whose semantic counterpart is satisfiability. A theory is satisfiable if it has a model, i.e., there exists an interpretation under which all axioms in the theory are true.[3] This is what consistent meant in traditional Aristotelian logic, although in contemporary mathematical logic the term satisfiable is used instead.

In a sound formal system, every satisfiable theory is consistent, but the converse does not hold. If there exists a deductive system for which these semantic and syntactic definitions are equivalent for any theory formulated in a particular deductive logic, the logic is called complete.[citation needed] The completeness of the propositional calculus was proved by Paul Bernays in 1918[citation needed][4] and Emil Post in 1921,[5] while the completeness of (first order) predicate calculus was proved by Kurt G?del in 1930,[6] and consistency proofs for arithmetics restricted with respect to the induction axiom schema were proved by Ackermann (1924), von Neumann (1927) and Herbrand (1931).[7] Stronger logics, such as second-order logic, are not complete.

A consistency proof is a mathematical proof that a particular theory is consistent.[8] The early development of mathematical proof theory was driven by the desire to provide finitary consistency proofs for all of mathematics as part of Hilbert's program. Hilbert's program was strongly impacted by the incompleteness theorems, which showed that sufficiently strong proof theories cannot prove their consistency (provided that they are consistent).

Although consistency can be proved using model theory, it is often done in a purely syntactical way, without any need to reference some model of the logic. The cut-elimination (or equivalently the normalization of the underlying calculus if there is one) implies the consistency of the calculus: since there is no cut-free proof of falsity, there is no contradiction in general.

Consistency and completeness in arithmetic and set theory

edit

In theories of arithmetic, such as Peano arithmetic, there is an intricate relationship between the consistency of the theory and its completeness. A theory is complete if, for every formula φ in its language, at least one of φ or ?φ is a logical consequence of the theory.

Presburger arithmetic is an axiom system for the natural numbers under addition. It is both consistent and complete.

G?del's incompleteness theorems show that any sufficiently strong recursively enumerable theory of arithmetic cannot be both complete and consistent. G?del's theorem applies to the theories of Peano arithmetic (PA) and primitive recursive arithmetic (PRA), but not to Presburger arithmetic.

Moreover, G?del's second incompleteness theorem shows that the consistency of sufficiently strong recursively enumerable theories of arithmetic can be tested in a particular way. Such a theory is consistent if and only if it does not prove a particular sentence, called the G?del sentence of the theory, which is a formalized statement of the claim that the theory is indeed consistent. Thus the consistency of a sufficiently strong, recursively enumerable, consistent theory of arithmetic can never be proven in that system itself. The same result is true for recursively enumerable theories that can describe a strong enough fragment of arithmetic—including set theories such as Zermelo–Fraenkel set theory (ZF). These set theories cannot prove their own G?del sentence—provided that they are consistent, which is generally believed.

Because consistency of ZF is not provable in ZF, the weaker notion relative consistency is interesting in set theory (and in other sufficiently expressive axiomatic systems). If T is a theory and A is an additional axiom, T + A is said to be consistent relative to T (or simply that A is consistent with T) if it can be proved that if T is consistent then T + A is consistent. If both A and ?A are consistent with T, then A is said to be independent of T.

First-order logic

edit

Notation

edit

In the following context of mathematical logic, the turnstile symbol   means "provable from". That is,   reads: b is provable from a (in some specified formal system).

Definition

edit
  • A set of formulas   in first-order logic is consistent (written  ) if there is no formula   such that   and  . Otherwise   is inconsistent (written  ).
  •   is said to be simply consistent if for no formula   of  , both   and the negation of   are theorems of  .[clarification needed]
  •   is said to be absolutely consistent or Post consistent if at least one formula in the language of   is not a theorem of  .
  •   is said to be maximally consistent if   is consistent and for every formula  ,   implies  .
  •   is said to contain witnesses if for every formula of the form   there exists a term   such that  , where   denotes the substitution of each   in   by a  ; see also First-order logic.[citation needed]

Basic results

edit
  1. The following are equivalent:
    1.  
    2. For all  
  2. Every satisfiable set of formulas is consistent, where a set of formulas   is satisfiable if and only if there exists a model   such that  .
  3. For all   and  :
    1. if not  , then  ;
    2. if   and  , then  ;
    3. if  , then   or  .
  4. Let   be a maximally consistent set of formulas and suppose it contains witnesses. For all   and  :
    1. if  , then  ,
    2. either   or  ,
    3.   if and only if   or  ,
    4. if   and  , then  ,
    5.   if and only if there is a term   such that  .[citation needed]

Henkin's theorem

edit

Let   be a set of symbols. Let   be a maximally consistent set of  -formulas containing witnesses.

Define an equivalence relation   on the set of  -terms by   if  , where   denotes equality. Let   denote the equivalence class of terms containing  ; and let   where   is the set of terms based on the set of symbols  .

Define the  -structure   over  , also called the term-structure corresponding to  , by:

  1. for each  -ary relation symbol  , define   if  [9]
  2. for each  -ary function symbol  , define  
  3. for each constant symbol  , define  

Define a variable assignment   by   for each variable  . Let   be the term interpretation associated with  .

Then for each  -formula  :

  if and only if  [citation needed]

Sketch of proof

edit

There are several things to verify. First, that   is in fact an equivalence relation. Then, it needs to be verified that (1), (2), and (3) are well defined. This falls out of the fact that   is an equivalence relation and also requires a proof that (1) and (2) are independent of the choice of   class representatives. Finally,   can be verified by induction on formulas.

Model theory

edit

In ZFC set theory with classical first-order logic,[10] an inconsistent theory   is one such that there exists a closed sentence   such that   contains both   and its negation  . A consistent theory is one such that the following logically equivalent conditions hold

  1.  [11]
  2.  

See also

edit

Notes

edit
  1. ^ Tarski 1946 states it this way: "A deductive theory is called consistent or non-contradictory if no two asserted statements of this theory contradict each other, or in other words, if of any two contradictory sentences … at least one cannot be proved," (p. 135) where Tarski defines contradictory as follows: "With the help of the word not one forms the negation of any sentence; two sentences, of which the first is a negation of the second, are called contradictory sentences" (p. 20). This definition requires a notion of "proof". G?del 1931 defines the notion this way: "The class of provable formulas is defined to be the smallest class of formulas that contains the axioms and is closed under the relation "immediate consequence", i.e., formula c of a and b is defined as an immediate consequence in terms of modus ponens or substitution; cf G?del 1931, van Heijenoort 1967, p. 601. Tarski defines "proof" informally as "statements follow one another in a definite order according to certain principles … and accompanied by considerations intended to establish their validity [true conclusion] for all true premises – Reichenbach 1947, p. 68]" cf Tarski 1946, p. 3. Kleene 1952 defines the notion with respect to either an induction or as to paraphrase) a finite sequence of formulas such that each formula in the sequence is either an axiom or an "immediate consequence" of the preceding formulas; "A proof is said to be a proof of its last formula, and this formula is said to be (formally) provable or be a (formal) theorem" cf Kleene 1952, p. 83.
  2. ^ Carnielli, Walter; Coniglio, Marcelo Esteban (2016). Paraconsistent logic: consistency, contradiction and negation. Logic, Epistemology, and the Unity of Science. Vol. 40. Cham: Springer. doi:10.1007/978-3-319-33205-5. ISBN 978-3-319-33203-1. MR 3822731. Zbl 1355.03001.
  3. ^ Hodges, Wilfrid (1997). A Shorter Model Theory. New York: Cambridge University Press. p. 37. Let   be a signature,   a theory in   and   a sentence in  . We say that   is a consequence of  , or that   entails  , in symbols  , if every model of   is a model of  . (In particular if   has no models then   entails  .)
    Warning: we don't require that if   then there is a proof of   from  . In any case, with infinitary languages, it's not always clear what would constitute proof. Some writers use   to mean that   is deducible from   in some particular formal proof calculus, and they write   for our notion of entailment (a notation which clashes with our  ). For first-order logic, the two kinds of entailment coincide by the completeness theorem for the proof calculus in question.
    We say that   is valid, or is a logical theorem, in symbols  , if   is true in every  -structure. We say that   is consistent if   is true in some  -structure. Likewise, we say that a theory   is consistent if it has a model.
    We say that two theories S and T in L infinity omega are equivalent if they have the same models, i.e. if Mod(S) = Mod(T).
    (Please note the definition of Mod(T) on p. 30 ...)
  4. ^ van Heijenoort 1967, p. 265 states that Bernays determined the independence of the axioms of Principia Mathematica, a result not published until 1926, but he says nothing about Bernays proving their consistency.
  5. ^ Post proves both consistency and completeness of the propositional calculus of PM, cf van Heijenoort's commentary and Post's 1931 Introduction to a general theory of elementary propositions in van Heijenoort 1967, pp. 264ff. Also Tarski 1946, pp. 134ff.
  6. ^ cf van Heijenoort's commentary and G?del's 1930 The completeness of the axioms of the functional calculus of logic in van Heijenoort 1967, pp. 582ff.
  7. ^ cf van Heijenoort's commentary and Herbrand's 1930 On the consistency of arithmetic in van Heijenoort 1967, pp. 618ff.
  8. ^ A consistency proof often assumes the consistency of another theory. In most cases, this other theory is Zermelo–Fraenkel set theory with or without the axiom of choice (this is equivalent since these two theories have been proved equiconsistent; that is, if one is consistent, the same is true for the other).
  9. ^ This definition is independent of the choice of   due to the substitutivity properties of   and the maximal consistency of  .
  10. ^ the common case in many applications to other areas of mathematics as well as the ordinary mode of reasoning of informal mathematics in calculus and applications to physics, chemistry, engineering
  11. ^ according to De Morgan's laws

References

edit
edit
政委什么级别 jeep是什么牌子 一喝牛奶就拉肚子是什么原因 盛情难却是什么意思 腹泻便溏是什么意思
苑什么意思 酒不醉人人自醉是什么意思 贵人多忘事什么意思 12月初是什么星座 落井下石什么意思
维生素b有什么功效 1887年属什么生肖 9月25是什么星座 今天生猪什么价 脚底灼热是什么原因
虎皮鹦鹉吃什么 七月九号是什么日子 羊水指数和羊水深度有什么区别 女孩喜欢什么礼物 什么什么相接
猕猴桃不能和什么一起吃hcv7jop9ns2r.cn 八点半是什么时辰96micro.com wonderflower是什么牌子hcv9jop2ns4r.cn 刺梨根泡酒有什么功效hcv9jop7ns1r.cn 罗非鱼长什么样hcv8jop2ns2r.cn
猪八戒的真名叫什么hcv7jop6ns0r.cn 手脚发热什么原因hcv8jop7ns3r.cn 指奸是什么意思fenrenren.com 汗水多吃什么药96micro.com 木乐读什么hcv9jop6ns2r.cn
什么是夜盲症hkuteam.com 便秘灌肠用什么水weuuu.com 体重除以身高的平方是什么指数hcv8jop8ns1r.cn 碘伏遇到什么会变白hcv8jop6ns3r.cn 无济于事的济是什么意思zhongyiyatai.com
合胞病毒是什么hcv8jop2ns9r.cn 肠系膜淋巴结肿大吃什么药hcv9jop0ns6r.cn 口若什么hcv8jop4ns3r.cn 落户什么意思xinjiangjialails.com 手汗症挂什么科hcv9jop8ns2r.cn
百度